A Distributed Safety Mechanism using Middleware and Hypervisors for Autonomous Vehicles

T. Bijlsma, Andrii Buriachevskyi, A. Frigerio, Yuting Fu, K. Goossens, Ali Osman Örs, Pieter J. van der Perk, A. Terechko, B. Vermeulen
{"title":"A Distributed Safety Mechanism using Middleware and Hypervisors for Autonomous Vehicles","authors":"T. Bijlsma, Andrii Buriachevskyi, A. Frigerio, Yuting Fu, K. Goossens, Ali Osman Örs, Pieter J. van der Perk, A. Terechko, B. Vermeulen","doi":"10.23919/date48585.2020.9116268","DOIUrl":null,"url":null,"abstract":"Autonomous vehicles use cyber-physical systems to provide comfort and safety to passengers. Design of safety mechanisms for such systems is hindered by the growing quantity and complexity of SoCs (System-on-a-Chip) and software stacks required for autonomous operation. Our study tackles two challenges: (1) fault handling in an autonomous driving system distributed across multiple processing cores and SoCs, and (2) isolation of multiple software modules consolidated in one SoC. To address the first challenge, we extend the state-of-the-art E-Gas layered monitoring concept. Similar to E-Gas, our safety mechanism has function, controller and vehicle layers. We propose to distribute these safety layers on processors with different ASILs (Automotive Safety Integrity Level). Besides, we implement seif-test, fault injection and challenge-response protocols to detect faults at runtime in the safety mechanism itself. To facilitate distributed operation, our mechanism is built on top of the DDS (Data Distribution Service) software middleware for safety-critical embedded applications, as well as DDS-XRCE (eXtremely Resource Constrained Environment) for resource- constrained processor cores of the highest ASIL. To address the second challenge, our safety mechanism employs hardware- assisted hypervisors to isolate software modules and implement fail-silent behavior of faulty software stacks. We validate our safety mechanism on the NXP BiueBox hardware platform using the LG SVL simulator, Baidu Apollo software framework for autonomous driving, and Xen hypervisor. Our fault injection experiments demonstrate that the distributed safety mechanism successfully detects faults in an autonomous system and safely stops the vehicle when necessary.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/date48585.2020.9116268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Autonomous vehicles use cyber-physical systems to provide comfort and safety to passengers. Design of safety mechanisms for such systems is hindered by the growing quantity and complexity of SoCs (System-on-a-Chip) and software stacks required for autonomous operation. Our study tackles two challenges: (1) fault handling in an autonomous driving system distributed across multiple processing cores and SoCs, and (2) isolation of multiple software modules consolidated in one SoC. To address the first challenge, we extend the state-of-the-art E-Gas layered monitoring concept. Similar to E-Gas, our safety mechanism has function, controller and vehicle layers. We propose to distribute these safety layers on processors with different ASILs (Automotive Safety Integrity Level). Besides, we implement seif-test, fault injection and challenge-response protocols to detect faults at runtime in the safety mechanism itself. To facilitate distributed operation, our mechanism is built on top of the DDS (Data Distribution Service) software middleware for safety-critical embedded applications, as well as DDS-XRCE (eXtremely Resource Constrained Environment) for resource- constrained processor cores of the highest ASIL. To address the second challenge, our safety mechanism employs hardware- assisted hypervisors to isolate software modules and implement fail-silent behavior of faulty software stacks. We validate our safety mechanism on the NXP BiueBox hardware platform using the LG SVL simulator, Baidu Apollo software framework for autonomous driving, and Xen hypervisor. Our fault injection experiments demonstrate that the distributed safety mechanism successfully detects faults in an autonomous system and safely stops the vehicle when necessary.
基于中间件和管理程序的自动驾驶汽车分布式安全机制
自动驾驶汽车使用网络物理系统为乘客提供舒适和安全。自主操作所需的soc(单片系统)和软件栈的数量和复杂性不断增长,阻碍了此类系统安全机制的设计。我们的研究解决了两个挑战:(1)分布在多个处理内核和SoC上的自动驾驶系统的故障处理;(2)在一个SoC中整合多个软件模块的隔离。为了解决第一个挑战,我们扩展了最先进的E-Gas分层监测概念。与E-Gas类似,我们的安全机制有功能层、控制器层和车辆层。我们建议将这些安全层分布在具有不同asil(汽车安全完整性级别)的处理器上。此外,我们还在安全机制本身实现了自检、故障注入和挑战响应协议,以在运行时检测故障。为了促进分布式操作,我们的机制建立在DDS(数据分布服务)软件中间件之上,用于安全关键型嵌入式应用程序,以及DDS- xrce(极度资源受限环境),用于最高ASIL的资源受限处理器内核。为了解决第二个挑战,我们的安全机制采用硬件辅助管理程序来隔离软件模块,并实现故障软件堆栈的故障沉默行为。我们在NXP BiueBox硬件平台上使用LG SVL模拟器、百度Apollo自动驾驶软件框架和Xen管理程序验证了我们的安全机制。我们的故障注入实验表明,分布式安全机制成功地检测到自动驾驶系统中的故障,并在必要时安全地停止车辆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信