Generating taxonomic terms for software bug classification by utilizing topic models based on Latent Dirichlet Allocation

N. K. Nagwani, S. Verma, K. K. Mehta
{"title":"Generating taxonomic terms for software bug classification by utilizing topic models based on Latent Dirichlet Allocation","authors":"N. K. Nagwani, S. Verma, K. K. Mehta","doi":"10.1109/ICTKE.2013.6756268","DOIUrl":null,"url":null,"abstract":"Discovering categorical (taxonomic) terms in text classification is an important and complex problem. Development of a good text classifier depends on the method of identification and generation of proper taxonomic terms. Software bug indicates improper behavior of the functionalities given during the requirements. These bugs are tracked with the help of bug tracking systems (BTS) where the bug information is presented using several attributes out of which some important attributes are textual for example summary and description. For effective classification of the software bugs a good text classifying mechanism is required for which proper taxonomic terms are required to be identified. In this work a methodology is presented to find the taxonomic terms using Latent Dirichlet Allocation (LDA) for software bug classification.","PeriodicalId":122281,"journal":{"name":"2013 Eleventh International Conference on ICT and Knowledge Engineering","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Eleventh International Conference on ICT and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTKE.2013.6756268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Discovering categorical (taxonomic) terms in text classification is an important and complex problem. Development of a good text classifier depends on the method of identification and generation of proper taxonomic terms. Software bug indicates improper behavior of the functionalities given during the requirements. These bugs are tracked with the help of bug tracking systems (BTS) where the bug information is presented using several attributes out of which some important attributes are textual for example summary and description. For effective classification of the software bugs a good text classifying mechanism is required for which proper taxonomic terms are required to be identified. In this work a methodology is presented to find the taxonomic terms using Latent Dirichlet Allocation (LDA) for software bug classification.
利用基于潜狄利克雷分配的主题模型生成软件缺陷分类术语
在文本分类中发现分类术语是一个重要而复杂的问题。一个好的文本分类器的开发取决于识别和生成适当分类术语的方法。软件缺陷表明在需求期间给出的功能的不适当行为。这些bug是在bug跟踪系统(BTS)的帮助下跟踪的,bug信息使用几个属性来呈现,其中一些重要的属性是文本的,例如摘要和描述。为了对软件缺陷进行有效的分类,需要一个良好的文本分类机制,并为其识别合适的分类术语。本文提出了一种利用潜狄利克雷分配(Latent Dirichlet Allocation, LDA)对软件缺陷进行分类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信