Sensitive prediction of bacterial type IV effectors

K. Açıcı, Duygu Dede Sener, H. Oğul
{"title":"Sensitive prediction of bacterial type IV effectors","authors":"K. Açıcı, Duygu Dede Sener, H. Oğul","doi":"10.1109/BIYOMUT.2014.7026341","DOIUrl":null,"url":null,"abstract":"Diverse human pathogens secret effector proteins into host cells via the type IV secretion system (T4SS). Effector proteins are important elements in the interaction between bacteria and hosts. Computational methods for T4SS effector prediction will be of great value. This paper introduces five types of feature representation schemes for prediction of effectors from sequence namely, amino acid composition, dipeptide composition, three-peptide composition, BLAST similarity scores and pseudo amino acid composition. SVM, k-NN, Naïve Bayes and Fisher LDA classification methods were performed in a newly established the dataset to predict T4SS effectors with using generated features. The experimental results indicate that classification methods we used are useful to discriminate IVA and IVB effectors with positive rates 83,3%, 96,5% respectively. The overall accuracy of 95.5% shows that the present method is accurate for distinguishing the T4SS effector in unidentified sequences.","PeriodicalId":428610,"journal":{"name":"2014 18th National Biomedical Engineering Meeting","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 18th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2014.7026341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diverse human pathogens secret effector proteins into host cells via the type IV secretion system (T4SS). Effector proteins are important elements in the interaction between bacteria and hosts. Computational methods for T4SS effector prediction will be of great value. This paper introduces five types of feature representation schemes for prediction of effectors from sequence namely, amino acid composition, dipeptide composition, three-peptide composition, BLAST similarity scores and pseudo amino acid composition. SVM, k-NN, Naïve Bayes and Fisher LDA classification methods were performed in a newly established the dataset to predict T4SS effectors with using generated features. The experimental results indicate that classification methods we used are useful to discriminate IVA and IVB effectors with positive rates 83,3%, 96,5% respectively. The overall accuracy of 95.5% shows that the present method is accurate for distinguishing the T4SS effector in unidentified sequences.
IV型细菌效应剂的敏感性预测
多种人类病原体通过IV型分泌系统(T4SS)向宿主细胞分泌效应蛋白。效应蛋白是细菌与宿主相互作用的重要组成部分。计算方法对T4SS效应预测具有重要的应用价值。本文介绍了氨基酸组成、二肽组成、三肽组成、BLAST相似性评分和伪氨基酸组成五种用于序列效应物预测的特征表示方案。在新建立的数据集上使用SVM、k-NN、Naïve Bayes和Fisher LDA分类方法,利用生成的特征对T4SS效应者进行预测。实验结果表明,所采用的分类方法对IVA和IVB效应物的阳性率分别为83,3%,96,5%。总体准确率为95.5%,表明该方法能够准确识别未识别序列中的T4SS效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信