Large Semi Primes Factorization with Its Implications to RSA Cryptosystems

R. Omollo, Arnold Okoth
{"title":"Large Semi Primes Factorization with Its Implications to RSA Cryptosystems","authors":"R. Omollo, Arnold Okoth","doi":"10.54646/bijscit.011","DOIUrl":null,"url":null,"abstract":"RSA’s strong cryptosystem works on the principle that there are no trivial solutions to integer factorization. Furthermore, factorization of very large semi primes cannot be done in polynomial time when it comes to the processing power of classical computers. In this paper, we present the analysis of Fermat’s Last Theorem and Arnold’s Theorem. Also highlighted include new techniques such as Arnold’s Digitized Summation Technique (A.D.S.T.) and a top-to-bottom, bottom-to-top approach search for the prime factors. These drastically reduce the time taken to factorize large semi primes as for the case in RSA Cryptosystem.","PeriodicalId":112029,"journal":{"name":"BOHR International Journal of Smart Computing and Information Technology","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOHR International Journal of Smart Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54646/bijscit.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RSA’s strong cryptosystem works on the principle that there are no trivial solutions to integer factorization. Furthermore, factorization of very large semi primes cannot be done in polynomial time when it comes to the processing power of classical computers. In this paper, we present the analysis of Fermat’s Last Theorem and Arnold’s Theorem. Also highlighted include new techniques such as Arnold’s Digitized Summation Technique (A.D.S.T.) and a top-to-bottom, bottom-to-top approach search for the prime factors. These drastically reduce the time taken to factorize large semi primes as for the case in RSA Cryptosystem.
大半素数分解及其对RSA密码系统的启示
RSA强大的密码系统工作原理是整数分解没有平凡的解。此外,当涉及到经典计算机的处理能力时,非常大的半素数的因式分解不能在多项式时间内完成。本文对费马大定理和阿诺德定理进行了分析。此外,还强调了一些新技术,如阿诺德的数字化求和技术(A.D.S.T.)和从上到下、从下到上的搜索主要因素的方法。这大大减少了分解大型半素数所需的时间,就像RSA密码系统中的情况一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信