Neural network approach to variable structure based adaptive tracking of SISO systems

L. Fu
{"title":"Neural network approach to variable structure based adaptive tracking of SISO systems","authors":"L. Fu","doi":"10.1109/VSS.1996.578593","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to adaptive tracking control of linear SISO systems, which can solve the traditional model reference adaptive control (MRAC) problems. In this approach, a neural network universal approximator is included to furnish an online estimate of a function of the state and some signals relevant to the desired trajectory. The salient feature of the present work is that a rigorous proof via Lyapunov stability theory is provided. It is shown that the output error will fall into a residual set which can be made arbitrarily small.","PeriodicalId":393072,"journal":{"name":"Proceedings. 1996 IEEE International Workshop on Variable Structure Systems. - VSS'96 -","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1996 IEEE International Workshop on Variable Structure Systems. - VSS'96 -","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.1996.578593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a novel approach to adaptive tracking control of linear SISO systems, which can solve the traditional model reference adaptive control (MRAC) problems. In this approach, a neural network universal approximator is included to furnish an online estimate of a function of the state and some signals relevant to the desired trajectory. The salient feature of the present work is that a rigorous proof via Lyapunov stability theory is provided. It is shown that the output error will fall into a residual set which can be made arbitrarily small.
基于变结构自适应跟踪的SISO系统神经网络方法
提出了一种新的线性SISO系统自适应跟踪控制方法,解决了传统的模型参考自适应控制(MRAC)问题。在这种方法中,使用神经网络通用逼近器来在线估计状态函数和与期望轨迹相关的一些信号。本文的显著特点是通过李亚普诺夫稳定性理论给出了严格的证明。结果表明,输出误差将落入一个残差集,该残差集可以任意小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信