Synthesis of embedded systemC design: a case study of digital neural networks

D. Lettnin, A. Braun, M. Bogdan, J. Gerlach, W. Rosenstiel
{"title":"Synthesis of embedded systemC design: a case study of digital neural networks","authors":"D. Lettnin, A. Braun, M. Bogdan, J. Gerlach, W. Rosenstiel","doi":"10.1109/DATE.2004.1269239","DOIUrl":null,"url":null,"abstract":"This work presents the whole system-on-silicon design flow using systemC system specification language. In this study, systemC is used to design a multilayer perceptron neural network, which is applied to an electrocardiogram pattern recognition system. The objective of this work is to exemplify the synthesis of RTL-and behavioral integrated systems. To achieve this, a preprocessing methodology was used to optimize the three main constraints of hardware neural network (HNN) design: accuracy, space and processing speed. This allows a complex HNN to be implemented on a single field programmable gate array (FPGA). The high level systemC synthesis allows the straightforward translation of system level into hardware level, avoiding the error prone and the time consuming translation into another hardware description language.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1269239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This work presents the whole system-on-silicon design flow using systemC system specification language. In this study, systemC is used to design a multilayer perceptron neural network, which is applied to an electrocardiogram pattern recognition system. The objective of this work is to exemplify the synthesis of RTL-and behavioral integrated systems. To achieve this, a preprocessing methodology was used to optimize the three main constraints of hardware neural network (HNN) design: accuracy, space and processing speed. This allows a complex HNN to be implemented on a single field programmable gate array (FPGA). The high level systemC synthesis allows the straightforward translation of system level into hardware level, avoiding the error prone and the time consuming translation into another hardware description language.
嵌入式系统综合设计:以数字神经网络为例
本文用systemC系统规范语言描述了整个单片系统的设计流程。本研究利用systemC设计多层感知器神经网络,并将其应用于心电图模式识别系统。这项工作的目的是举例说明rtl和行为集成系统的综合。为了实现这一目标,采用预处理方法优化硬件神经网络(HNN)设计的三个主要约束:精度、空间和处理速度。这允许在单个现场可编程门阵列(FPGA)上实现复杂的HNN。高级systemC综合允许直接将系统级转换为硬件级,避免容易出错和费时的转换为另一种硬件描述语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信