Alleviating the cold-start problem of recommender systems using a new hybrid approach

Javad Basiri, A. Shakery, B. Moshiri, Morteza Zi Hayat
{"title":"Alleviating the cold-start problem of recommender systems using a new hybrid approach","authors":"Javad Basiri, A. Shakery, B. Moshiri, Morteza Zi Hayat","doi":"10.1109/ISTEL.2010.5734161","DOIUrl":null,"url":null,"abstract":"Recommender systems have become significant tools in electronic commerce, proposing effectively those items that best meet the preferences of users. A variety of techniques have been proposed for the recommender systems such as, collaborative filtering and content-based filtering. This study proposes a new hybrid recommender system that focuses on improving the performance under the “new user cold-start” condition where existence of users with no ratings or with only a small number of ratings is probable. In this method, the optimistic exponential type of ordered weighted averaging (OWA) operator is applied to fuse the output of five recommender system strategies. Experiments using MovieLens dataset show the superiority of the proposed hybrid approach in the cold-start conditions.","PeriodicalId":306663,"journal":{"name":"2010 5th International Symposium on Telecommunications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2010.5734161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Recommender systems have become significant tools in electronic commerce, proposing effectively those items that best meet the preferences of users. A variety of techniques have been proposed for the recommender systems such as, collaborative filtering and content-based filtering. This study proposes a new hybrid recommender system that focuses on improving the performance under the “new user cold-start” condition where existence of users with no ratings or with only a small number of ratings is probable. In this method, the optimistic exponential type of ordered weighted averaging (OWA) operator is applied to fuse the output of five recommender system strategies. Experiments using MovieLens dataset show the superiority of the proposed hybrid approach in the cold-start conditions.
用一种新的混合方法缓解推荐系统的冷启动问题
推荐系统已经成为电子商务的重要工具,有效地推荐那些最符合用户偏好的商品。针对推荐系统提出了多种技术,如协同过滤和基于内容的过滤。本研究提出了一种新的混合推荐系统,其重点是提高“新用户冷启动”条件下的性能,这种情况下可能存在没有评分或只有少量评分的用户。该方法采用乐观指数型有序加权平均(OWA)算子对五种推荐系统策略的输出进行融合。基于MovieLens数据集的实验表明,该混合方法在冷启动条件下具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信