{"title":"Microchannel-pinhole parameters investigation for cells visualization in holographic microscopy","authors":"M. Mihailescu, E. Scarlat, M. Kusko","doi":"10.1109/SMICND.2011.6095718","DOIUrl":null,"url":null,"abstract":"Here we propose a compact system built around a microchannel aiming to analyze individual blood cells (BCs), using digital in-line holographic microscopy (DIHM). Under the constraints of achieving maximum resolution for BC images, the study is focused on analytical investigations of the main elements constructive dimensions and the distances between them. In the simulations, we used models of oblate spheroids for BC shapes. The iso-intensity curves in the diffraction pattern of the BCs which flow in the microchannel at different distances are studied and the technically possible dimensions were selected to record the signal from one BC.","PeriodicalId":403202,"journal":{"name":"CAS 2011 Proceedings (2011 International Semiconductor Conference)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAS 2011 Proceedings (2011 International Semiconductor Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2011.6095718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Here we propose a compact system built around a microchannel aiming to analyze individual blood cells (BCs), using digital in-line holographic microscopy (DIHM). Under the constraints of achieving maximum resolution for BC images, the study is focused on analytical investigations of the main elements constructive dimensions and the distances between them. In the simulations, we used models of oblate spheroids for BC shapes. The iso-intensity curves in the diffraction pattern of the BCs which flow in the microchannel at different distances are studied and the technically possible dimensions were selected to record the signal from one BC.