Process Variation Aware Cache Leakage Management

Ke Meng, R. Joseph
{"title":"Process Variation Aware Cache Leakage Management","authors":"Ke Meng, R. Joseph","doi":"10.1145/1165573.1165636","DOIUrl":null,"url":null,"abstract":"In a few technology generations, limitations of fabrication processes have made accurate design time power estimates a daunting challenge. Static leakage current which comprises a significant fraction of total power due to large on-chip caches, is exponentially dependent on widely varying physical parameters such as gate length, gate oxide thickness, and dopant ion concentration. In large structures like on-chip caches, this may mean that one portion of a cache may consume an order of magnitude larger static power than equivalently sized regions. Under this climate, egalitarian management of physical resources is clearly untenable. In this paper, we analyze the effects of within-die and die-to-die leakage variation for on-chip caches. We then propose way prioritization, a manufacturing variation aware scheme that minimizes cache leakage energy. Our results show that significant average power reductions are possible without undue hardware complexity or performance compromise","PeriodicalId":119229,"journal":{"name":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","volume":"20 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1165573.1165636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

In a few technology generations, limitations of fabrication processes have made accurate design time power estimates a daunting challenge. Static leakage current which comprises a significant fraction of total power due to large on-chip caches, is exponentially dependent on widely varying physical parameters such as gate length, gate oxide thickness, and dopant ion concentration. In large structures like on-chip caches, this may mean that one portion of a cache may consume an order of magnitude larger static power than equivalently sized regions. Under this climate, egalitarian management of physical resources is clearly untenable. In this paper, we analyze the effects of within-die and die-to-die leakage variation for on-chip caches. We then propose way prioritization, a manufacturing variation aware scheme that minimizes cache leakage energy. Our results show that significant average power reductions are possible without undue hardware complexity or performance compromise
进程变化感知缓存泄漏管理
在几代技术中,制造工艺的局限性使得精确的设计时间功率估计成为一项艰巨的挑战。由于片上高速缓存,静态泄漏电流占总功率的很大一部分,它与栅极长度、栅极氧化物厚度和掺杂离子浓度等广泛变化的物理参数呈指数关系。在像片上缓存这样的大型结构中,这可能意味着缓存的一部分可能比同等大小的区域消耗一个数量级的静态功率。在这种氛围下,对物质资源的平等主义管理显然是站不住脚的。在本文中,我们分析了模内和模间泄漏变化对片上高速缓存的影响。然后,我们提出了方法优先化,这是一种制造变化感知方案,可以最大限度地减少缓存泄漏能量。我们的结果表明,在不损害硬件复杂性或性能的情况下,显著的平均功耗降低是可能的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信