Finite state machine decomposition for low power

J. Monteiro, Arlindo L. Oliveira
{"title":"Finite state machine decomposition for low power","authors":"J. Monteiro, Arlindo L. Oliveira","doi":"10.1145/277044.277235","DOIUrl":null,"url":null,"abstract":"Clock-gating techniques have been shown to be very effective in the reduction of the switching activity in sequential logic circuits. The authors describe a new clock-gating technique based on finite state machine (FSM) decomposition. They compute two sub-FSMs that together have the same functionality as the original FSM. For all the transitions within one sub-FSM, the clock for the other sub-FSM is disabled. To minimize the average switching activity, they search for a small cluster of states with high stationary state probability and use it to create the small sub-FSM. This way one will have a small amount of logic that is active most of the time, during which is disabling a much larger circuit, the other sub-FSM. They provide a set of experimental results that show that power consumption can be substantially reduced, in some cases up to 80%.","PeriodicalId":221221,"journal":{"name":"Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/277044.277235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

Clock-gating techniques have been shown to be very effective in the reduction of the switching activity in sequential logic circuits. The authors describe a new clock-gating technique based on finite state machine (FSM) decomposition. They compute two sub-FSMs that together have the same functionality as the original FSM. For all the transitions within one sub-FSM, the clock for the other sub-FSM is disabled. To minimize the average switching activity, they search for a small cluster of states with high stationary state probability and use it to create the small sub-FSM. This way one will have a small amount of logic that is active most of the time, during which is disabling a much larger circuit, the other sub-FSM. They provide a set of experimental results that show that power consumption can be substantially reduced, in some cases up to 80%.
低功耗有限状态机分解
时钟门控技术已被证明是非常有效的减少开关活动在顺序逻辑电路。提出了一种基于有限状态机(FSM)分解的时钟门控技术。它们计算两个子FSM,这两个子FSM具有与原始FSM相同的功能。对于一个子fsm中的所有转换,另一个子fsm的时钟将被禁用。为了最小化平均切换活动,他们寻找一个具有高稳态概率的小状态簇,并用它来创建小的子fsm。这样一来,就会有一小部分逻辑在大部分时间处于活动状态,在此期间会禁用一个更大的电路,即另一个子fsm。他们提供了一组实验结果,表明功耗可以大幅降低,在某些情况下高达80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信