Robust interference identification for multi-RAT optimization in wireless cellular networks

Emmanuel Pollakis, R. Cavalcante, S. Stańczak, F. Penna
{"title":"Robust interference identification for multi-RAT optimization in wireless cellular networks","authors":"Emmanuel Pollakis, R. Cavalcante, S. Stańczak, F. Penna","doi":"10.1109/DYSPAN.2012.6478147","DOIUrl":null,"url":null,"abstract":"The objective of this study is to devise novel cognitive interference identification techniques for UMTS and LTE networks. We apply machine learning techniques to reconstruct interference patterns using a priori system knowledge, limited user information and sparse pathloss and interference measurements. The obtained interference patterns are used to build a multi-RAT optimization procedure aiming at energy efficient operation.","PeriodicalId":224818,"journal":{"name":"2012 IEEE International Symposium on Dynamic Spectrum Access Networks","volume":"1437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Dynamic Spectrum Access Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DYSPAN.2012.6478147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of this study is to devise novel cognitive interference identification techniques for UMTS and LTE networks. We apply machine learning techniques to reconstruct interference patterns using a priori system knowledge, limited user information and sparse pathloss and interference measurements. The obtained interference patterns are used to build a multi-RAT optimization procedure aiming at energy efficient operation.
无线蜂窝网络中多rat优化的鲁棒干扰识别
本研究的目的是为UMTS和LTE网络设计新的认知干扰识别技术。我们应用机器学习技术,利用先验系统知识、有限的用户信息、稀疏的路径损失和干扰测量来重建干扰模式。利用得到的干扰图构建了以节能运行为目标的多rat优化程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信