Semi-Automatic Labeling and Semantic Segmentation of Gram-Stained Microscopic Images from DIBaS Dataset

C. P, Pullagurla Abhijith Reddy, Vidyashree Kanabur, Deepu Vijayasenan, Sumam David S., S. Govindan
{"title":"Semi-Automatic Labeling and Semantic Segmentation of Gram-Stained Microscopic Images from DIBaS Dataset","authors":"C. P, Pullagurla Abhijith Reddy, Vidyashree Kanabur, Deepu Vijayasenan, Sumam David S., S. Govindan","doi":"10.1109/ICCSC56913.2023.10142976","DOIUrl":null,"url":null,"abstract":"In this paper, a semi-automatic annotation of bacteria genera and species from DIBaS dataset is implemented using clustering and thresholding algorithms. A Deep learning model is trained to achieve the semantic segmentation and classification of the bacteria species. Pixel-level classification accuracy of 95 percent is achieved. Deep learning models find tremendous applications in biomedical image processing. Automatic segmentation of bacteria from gram-stained microscopic images is essential to diagnose respiratory and urinary tract infections, detect cancer, etc. Deep learning will aid the biologists to get reliable results in less time. Additionally, a lot of human intervention can be reduced. This work can be helpful to detect bacteria from urinary smear images, sputum smear images, etc to diagnose urinary tract infections, tuberculosis, pneumonia, etc.","PeriodicalId":184366,"journal":{"name":"2023 2nd International Conference on Computational Systems and Communication (ICCSC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Computational Systems and Communication (ICCSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSC56913.2023.10142976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a semi-automatic annotation of bacteria genera and species from DIBaS dataset is implemented using clustering and thresholding algorithms. A Deep learning model is trained to achieve the semantic segmentation and classification of the bacteria species. Pixel-level classification accuracy of 95 percent is achieved. Deep learning models find tremendous applications in biomedical image processing. Automatic segmentation of bacteria from gram-stained microscopic images is essential to diagnose respiratory and urinary tract infections, detect cancer, etc. Deep learning will aid the biologists to get reliable results in less time. Additionally, a lot of human intervention can be reduced. This work can be helpful to detect bacteria from urinary smear images, sputum smear images, etc to diagnose urinary tract infections, tuberculosis, pneumonia, etc.
DIBaS数据集中gram染色显微图像的半自动标记和语义分割
本文采用聚类和阈值算法实现了DIBaS数据集中细菌属和种的半自动标注。训练一个深度学习模型来实现细菌种类的语义分割和分类。实现了95%的像素级分类精度。深度学习模型在生物医学图像处理中有着巨大的应用。从革兰氏染色显微图像中自动分割细菌对于诊断呼吸道和尿路感染、检测癌症等至关重要。深度学习将帮助生物学家在更短的时间内得到可靠的结果。此外,许多人为干预可以减少。这项工作有助于从尿涂片图像、痰涂片图像等中检测细菌,诊断尿路感染、肺结核、肺炎等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信