Longitudinal Collision Avoidance In Self-Driving Vehicles Using Deep Learning And Particle Swarm Optimization

Tejashri Kelhe, Devika S. Nair, Gayatri Kulkarni, A. Deshpande
{"title":"Longitudinal Collision Avoidance In Self-Driving Vehicles Using Deep Learning And Particle Swarm Optimization","authors":"Tejashri Kelhe, Devika S. Nair, Gayatri Kulkarni, A. Deshpande","doi":"10.1109/punecon52575.2021.9686482","DOIUrl":null,"url":null,"abstract":"Fast and efficient object detection and collision avoidance is an increasingly significant task for autonomous driving technology. This paper proposes a deep learning and swarm intelligence based approach in the automotive domain to detect objects and subsequently avoid collisions. By combining them, improvement can be achieved in the speed and accuracy of self-driving cars to avoid longitudinal collisions. Our proposed approach uses a highly accurate and well-suited deep learning technique for object detection to detect objects in real-time using algorithms and methods such as Mask Region-Based Convolutional Neural Networks (Mask R-CNN) and different versions of You Only Look Once (YOLO). Particle Swarm Optimization (PSO) is used to optimize and predict the parameters (velocity and acceleration) required for the self driving car to avoid colliding with the detected object.","PeriodicalId":154406,"journal":{"name":"2021 IEEE Pune Section International Conference (PuneCon)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/punecon52575.2021.9686482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fast and efficient object detection and collision avoidance is an increasingly significant task for autonomous driving technology. This paper proposes a deep learning and swarm intelligence based approach in the automotive domain to detect objects and subsequently avoid collisions. By combining them, improvement can be achieved in the speed and accuracy of self-driving cars to avoid longitudinal collisions. Our proposed approach uses a highly accurate and well-suited deep learning technique for object detection to detect objects in real-time using algorithms and methods such as Mask Region-Based Convolutional Neural Networks (Mask R-CNN) and different versions of You Only Look Once (YOLO). Particle Swarm Optimization (PSO) is used to optimize and predict the parameters (velocity and acceleration) required for the self driving car to avoid colliding with the detected object.
基于深度学习和粒子群优化的自动驾驶汽车纵向避碰
快速高效的目标检测与避碰是自动驾驶技术日益重要的课题。本文提出了一种基于深度学习和群体智能的汽车领域检测物体并避免碰撞的方法。通过将它们结合起来,可以提高自动驾驶汽车的速度和准确性,以避免纵向碰撞。我们提出的方法使用高度精确且非常适合的深度学习技术进行对象检测,使用基于掩码区域的卷积神经网络(Mask R-CNN)和不同版本的You Only Look Once (YOLO)等算法和方法实时检测对象。粒子群算法(Particle Swarm Optimization, PSO)用于优化和预测自动驾驶汽车避免与被检测物体发生碰撞所需的参数(速度和加速度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信