The method of minimum of duration in application to permittivity profile reconstruction

S. Alexin, O. Antropov, O. Drobakhin
{"title":"The method of minimum of duration in application to permittivity profile reconstruction","authors":"S. Alexin, O. Antropov, O. Drobakhin","doi":"10.1109/DIPED.2008.4671800","DOIUrl":null,"url":null,"abstract":"A new approach to permittivity profile reconstruction based on impulse reflection response processing is considered. The impulse response data is examined to be obtained with use of microwave reflection coefficient data extrapolation technique completed with discrete Fourier transform. The extrapolation is carried through special functional minimization procedure providing minimum of quasiduration of impulse response (method of minimum of duration, MMD). Results of numerical data processing using Gelpsilafand-Levitan iterative scheme for permittivity profile reconstruction are presented.","PeriodicalId":178792,"journal":{"name":"2008 13th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 13th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2008.4671800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new approach to permittivity profile reconstruction based on impulse reflection response processing is considered. The impulse response data is examined to be obtained with use of microwave reflection coefficient data extrapolation technique completed with discrete Fourier transform. The extrapolation is carried through special functional minimization procedure providing minimum of quasiduration of impulse response (method of minimum of duration, MMD). Results of numerical data processing using Gelpsilafand-Levitan iterative scheme for permittivity profile reconstruction are presented.
最小持续时间法在介电常数剖面重建中的应用
提出了一种基于脉冲反射响应处理的介电常数剖面重建方法。利用离散傅里叶变换完成的微波反射系数数据外推技术对脉冲响应数据进行了检验。外推是通过提供脉冲响应准定性最小值的特殊函数最小化程序进行的(最小持续时间法,MMD)。给出了用Gelpsilafand-Levitan迭代格式进行介电常数剖面重建的数值数据处理结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信