Face blind separation using wavelet packet independent component analysis

Xiaoli Huang, H. Zeng
{"title":"Face blind separation using wavelet packet independent component analysis","authors":"Xiaoli Huang, H. Zeng","doi":"10.1109/IASP.2010.5476181","DOIUrl":null,"url":null,"abstract":"A novel wavelet packet based approach to Subband decomposition independent component analysis (SDICA) is proposed. The mutual information based on small cumulant is introduced to select the Subband with least dependent components. We present favorable comparisons to the WPSD ICA and other ICA algorithm in extensive simulations. We demonstrate consistent performance in terms of accuracy and robustness as well as computational efficiency of WPSD ICA algorithm. Experimental results demonstrate that the proposed method can significantly improve the face recognition performance.","PeriodicalId":223866,"journal":{"name":"2010 International Conference on Image Analysis and Signal Processing","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2010.5476181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel wavelet packet based approach to Subband decomposition independent component analysis (SDICA) is proposed. The mutual information based on small cumulant is introduced to select the Subband with least dependent components. We present favorable comparisons to the WPSD ICA and other ICA algorithm in extensive simulations. We demonstrate consistent performance in terms of accuracy and robustness as well as computational efficiency of WPSD ICA algorithm. Experimental results demonstrate that the proposed method can significantly improve the face recognition performance.
基于小波包独立分量分析的人脸盲分离
提出了一种基于小波包的子带分解独立分量分析(SDICA)方法。引入基于小累积量的互信息来选择依赖分量最小的子带。我们在大量的模拟中比较了WPSD ICA和其他ICA算法。我们证明了WPSD ICA算法在准确性和鲁棒性以及计算效率方面具有一致的性能。实验结果表明,该方法能显著提高人脸识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信