Decision tree induction based on autocortelation function

Zhang Shuyu, Zhu Zhongying
{"title":"Decision tree induction based on autocortelation function","authors":"Zhang Shuyu, Zhu Zhongying","doi":"10.1109/ICIMA.2004.1384318","DOIUrl":null,"url":null,"abstract":"Abslracf-The paper introduces definition of autocorrelation function and theory of perturbation. Time sequence model is different from ordinary linear regression model. The ordinary methods of detecting abnormal value do not have good effectiveness for time sequences such as data deletion method and single point derivation method. In order to detect the strong influence points in time sequences, we discuss the perturbation theory of autocorrelation function with several minute perturbations. A new kind of decision tree based on Autocorrelation Function (AF) is developed. The simulation results show the effectiveness and accuracy of the decision tree.","PeriodicalId":375056,"journal":{"name":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMA.2004.1384318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abslracf-The paper introduces definition of autocorrelation function and theory of perturbation. Time sequence model is different from ordinary linear regression model. The ordinary methods of detecting abnormal value do not have good effectiveness for time sequences such as data deletion method and single point derivation method. In order to detect the strong influence points in time sequences, we discuss the perturbation theory of autocorrelation function with several minute perturbations. A new kind of decision tree based on Autocorrelation Function (AF) is developed. The simulation results show the effectiveness and accuracy of the decision tree.
基于自相关函数的决策树归纳
文摘:介绍了自相关函数的定义和摄动理论。时间序列模型不同于一般的线性回归模型。常规的异常值检测方法如数据删除法和单点推导法对时间序列的检测效果不佳。为了检测时间序列中的强影响点,我们讨论了带有几个微小扰动的自相关函数的摄动理论。提出了一种新的基于自相关函数的决策树。仿真结果表明了该决策树的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信