{"title":"Reducing Tracking Error in RFID Real-Time Localization Systems Using Kalman Filters","authors":"Benjamin Sanda, I. Abdel-Qader, A. Akanmu","doi":"10.4018/IJHCR.2014070101","DOIUrl":null,"url":null,"abstract":"The use of Radio Frequency Identification RFID has become widespread in industry as a means to quickly and wirelessly identify and track packages and equipment. Now there is a commercial interest in using RFID to provide real-time localization. Efforts to use RFID technology in this way experience localization errors due to noise and multipath effects inherent to these environments. This paper presents the use of both linear Kalman filters and non-linear Unscented Kalman filters to reduce the error rate inherent to real-time RFID localization systems and provide more accurate localization results in indoor environments. A commercial RFID localization system designed for use by the construction industry is used in this work, and a filtering model based on 3rd order motion is developed. The filtering model is tested with real-world data and shown to provide an increase in localization accuracy when applied to both raw time of arrival measurements as well as final localization results.","PeriodicalId":265963,"journal":{"name":"Int. J. Handheld Comput. Res.","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Handheld Comput. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHCR.2014070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The use of Radio Frequency Identification RFID has become widespread in industry as a means to quickly and wirelessly identify and track packages and equipment. Now there is a commercial interest in using RFID to provide real-time localization. Efforts to use RFID technology in this way experience localization errors due to noise and multipath effects inherent to these environments. This paper presents the use of both linear Kalman filters and non-linear Unscented Kalman filters to reduce the error rate inherent to real-time RFID localization systems and provide more accurate localization results in indoor environments. A commercial RFID localization system designed for use by the construction industry is used in this work, and a filtering model based on 3rd order motion is developed. The filtering model is tested with real-world data and shown to provide an increase in localization accuracy when applied to both raw time of arrival measurements as well as final localization results.