Exploratory analysis of large web datasets

S. Castano, A. Ferrara, S. Montanelli
{"title":"Exploratory analysis of large web datasets","authors":"S. Castano, A. Ferrara, S. Montanelli","doi":"10.1109/RTSI.2015.7325105","DOIUrl":null,"url":null,"abstract":"In the era of big data, the capability to identify very quickly prominent summary information about a target entity of interest, like a person or an event, from large datasets is essential, and exploratory analysis techniques help in this direction. In this paper, we provide a solution based on smart entity views and on pre-defined analysis operators which exploit keywords available in the entity view together with similarity information to produce summary information about the view contents from both a thematic and analytics perspective. In particular, smart entity views can be analyzed according to the following exploratory paradigms: entity expansion, entity visualization, and entity analytics. The proposed approach is discussed by referring to a case study of twitter dataset related to the “Expo2015” event as target entity.","PeriodicalId":187166,"journal":{"name":"2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSI.2015.7325105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of big data, the capability to identify very quickly prominent summary information about a target entity of interest, like a person or an event, from large datasets is essential, and exploratory analysis techniques help in this direction. In this paper, we provide a solution based on smart entity views and on pre-defined analysis operators which exploit keywords available in the entity view together with similarity information to produce summary information about the view contents from both a thematic and analytics perspective. In particular, smart entity views can be analyzed according to the following exploratory paradigms: entity expansion, entity visualization, and entity analytics. The proposed approach is discussed by referring to a case study of twitter dataset related to the “Expo2015” event as target entity.
大型网络数据集的探索性分析
在大数据时代,从大型数据集中快速识别出感兴趣的目标实体(如人或事件)的突出摘要信息的能力至关重要,探索性分析技术有助于这一方向。在本文中,我们提供了一个基于智能实体视图和预定义分析运算符的解决方案,这些运算符利用实体视图中可用的关键字以及相似度信息,从主题和分析的角度产生关于视图内容的摘要信息。具体而言,智能实体视图可以通过以下探索性范式进行分析:实体扩展、实体可视化和实体分析。本文以以“Expo2015”事件为目标实体的twitter数据集为例进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信