Sentiment classification of Hinglish text

Kumar Ravi, V. Ravi
{"title":"Sentiment classification of Hinglish text","authors":"Kumar Ravi, V. Ravi","doi":"10.1109/RAIT.2016.7507974","DOIUrl":null,"url":null,"abstract":"In order to determine the sentiment polarity of Hinglish text written in Roman script, we experimented with different combinations of feature selection methods and a host of classifiers using term frequency-inverse document frequency feature representation. We carried out in total 840 experiments in order to determine the best classifiers for sentiment expressed in the news and Facebook comments written in Hinglish. We concluded that a triumvirate of term frequency-inverse document frequency-based feature representation, gain ratio based feature selection, and Radial Basis Function Neural Network as the best combination to classify sentiment expressed in the Hinglish text.","PeriodicalId":289216,"journal":{"name":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2016.7507974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

In order to determine the sentiment polarity of Hinglish text written in Roman script, we experimented with different combinations of feature selection methods and a host of classifiers using term frequency-inverse document frequency feature representation. We carried out in total 840 experiments in order to determine the best classifiers for sentiment expressed in the news and Facebook comments written in Hinglish. We concluded that a triumvirate of term frequency-inverse document frequency-based feature representation, gain ratio based feature selection, and Radial Basis Function Neural Network as the best combination to classify sentiment expressed in the Hinglish text.
印度英语文本的情感分类
为了确定用罗马文字书写的印度英语文本的情感极性,我们尝试了不同的特征选择方法组合和一系列使用词频率-逆文档频率特征表示的分类器。我们总共进行了840次实验,以确定用印度英语写的新闻和Facebook评论中表达的情绪的最佳分类器。我们得出结论,基于术语频率-逆文档频率的特征表示,基于增益比的特征选择和径向基函数神经网络的三组组合是对印度英语文本中表达的情感进行分类的最佳组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信