Floorplan sizing by linear programming approximation

Pinghong Chen, E. Kuh
{"title":"Floorplan sizing by linear programming approximation","authors":"Pinghong Chen, E. Kuh","doi":"10.1109/DAC.2000.855356","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approximation algorithm by linear programming (LP) for floorplan sizing problem. Given any topological constraints between blocks, we can formulate it as an LP problem with a cost function for the minimum bounding box area. Unlike slicing structures, this approach can handle any topological constraints as well as soft/hard/preplaced blocks, and timing constraints. Empirically, our method needs few iterations to find the optimum solution and shows one order of improvement over previous methods both in run time and capability to handle a larger problem size even on a very limited computing resource PC.","PeriodicalId":237114,"journal":{"name":"Proceedings 37th Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 37th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC.2000.855356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this paper, we present an approximation algorithm by linear programming (LP) for floorplan sizing problem. Given any topological constraints between blocks, we can formulate it as an LP problem with a cost function for the minimum bounding box area. Unlike slicing structures, this approach can handle any topological constraints as well as soft/hard/preplaced blocks, and timing constraints. Empirically, our method needs few iterations to find the optimum solution and shows one order of improvement over previous methods both in run time and capability to handle a larger problem size even on a very limited computing resource PC.
平面尺寸的线性规划近似
本文提出了一种用线性规划方法求解平面尺寸问题的近似算法。给定任何块之间的拓扑约束,我们可以将其表述为具有最小边界框面积代价函数的LP问题。与切片结构不同,这种方法可以处理任何拓扑约束以及软/硬/预置块和时序约束。根据经验,我们的方法需要很少的迭代来找到最优解决方案,并且在运行时间和处理更大问题的能力方面比以前的方法有了一个数量级的改进,即使在计算资源非常有限的PC上也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信