A. Ajami, K. Banerjee, Massoud Pedram, L. V. Ginneken
{"title":"Analysis of non-uniform temperature-dependent interconnect performance in high performance ICs","authors":"A. Ajami, K. Banerjee, Massoud Pedram, L. V. Ginneken","doi":"10.1145/378239.379025","DOIUrl":null,"url":null,"abstract":"Non-uniform temperature profiles along global interconnect lines in high-performance ICs can significantly impact the performance of these lines. This paper presents a detailed analysis and modeling of the interconnect performance degradation due to non-uniform temperature profiles that exist along their lengths, which in turn arise due to the thermal gradients in the underlying substrate. A non-uniform temperature-dependent distributed RC interconnect delay model is proposed for the first time. The model has been applied to a wide variety of interconnect layouts and temperature distributions to quantify the impact on signal integrity issues including clock skew fluctuations.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.379025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60
Abstract
Non-uniform temperature profiles along global interconnect lines in high-performance ICs can significantly impact the performance of these lines. This paper presents a detailed analysis and modeling of the interconnect performance degradation due to non-uniform temperature profiles that exist along their lengths, which in turn arise due to the thermal gradients in the underlying substrate. A non-uniform temperature-dependent distributed RC interconnect delay model is proposed for the first time. The model has been applied to a wide variety of interconnect layouts and temperature distributions to quantify the impact on signal integrity issues including clock skew fluctuations.