Markerless Human Activity Recognition Method Based on Deep Neural Network Model Using Multiple Cameras

Prasetia Utama Putra, K. Shima, Koji Shimatani
{"title":"Markerless Human Activity Recognition Method Based on Deep Neural Network Model Using Multiple Cameras","authors":"Prasetia Utama Putra, K. Shima, Koji Shimatani","doi":"10.1109/CoDIT.2018.8394780","DOIUrl":null,"url":null,"abstract":"Most methods of multi-view human activity recognition can be classified as conventional computer vision approaches. Those approaches separate feature descriptor and discriminator. Hence, the feature extractor cannot learn from the mistakes made by the classifier. In this paper, a deep neural network (DNN) model for human activity estimation using multi-view sequences of raw images is presented. This approach incorporates features extractor and discriminator into a single model. The model comprises three parts, a convolutional neural network (CNN) block, MSLSTMRes, and a dense layer. This method enables discrimination of human activity such as “walk” and “sit down” by merely using sequences of raw images. Experimental results on IXMAS dataset using one-subject cross validation demonstrates high prediction rate that is comparable to other methods in the literature, which utilized preprocessed images such as silhouette and volumetric data and sophisticated feature extractor.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Most methods of multi-view human activity recognition can be classified as conventional computer vision approaches. Those approaches separate feature descriptor and discriminator. Hence, the feature extractor cannot learn from the mistakes made by the classifier. In this paper, a deep neural network (DNN) model for human activity estimation using multi-view sequences of raw images is presented. This approach incorporates features extractor and discriminator into a single model. The model comprises three parts, a convolutional neural network (CNN) block, MSLSTMRes, and a dense layer. This method enables discrimination of human activity such as “walk” and “sit down” by merely using sequences of raw images. Experimental results on IXMAS dataset using one-subject cross validation demonstrates high prediction rate that is comparable to other methods in the literature, which utilized preprocessed images such as silhouette and volumetric data and sophisticated feature extractor.
基于深度神经网络模型的多摄像头无标记人体活动识别方法
多视角人体活动识别的方法大多可以归为传统的计算机视觉方法。这些方法分离了特征描述符和鉴别器。因此,特征提取器不能从分类器的错误中学习。本文提出了一种基于原始图像多视图序列的深度神经网络(DNN)人体活动估计模型。该方法将特征提取器和鉴别器集成到一个模型中。该模型由卷积神经网络(CNN)块、MSLSTMRes和密集层三部分组成。这种方法仅通过使用原始图像序列就可以区分“走路”和“坐下”等人类活动。在IXMAS数据集上使用单主体交叉验证的实验结果表明,利用轮廓和体积数据等预处理图像以及复杂的特征提取器进行的预测率与文献中其他方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信