Towards evasive maneuvers with quadrotors using dynamic vision sensors

Elias Mueggler, Nathan Baumli, Flavio Fontana, D. Scaramuzza
{"title":"Towards evasive maneuvers with quadrotors using dynamic vision sensors","authors":"Elias Mueggler, Nathan Baumli, Flavio Fontana, D. Scaramuzza","doi":"10.1109/ECMR.2015.7324048","DOIUrl":null,"url":null,"abstract":"We present a method to predict collisions with objects thrown at a quadrotor using a pair of dynamic vision sensors (DVS). Due to the micro-second temporal resolution of these sensors and the sparsity of their output, the object's trajectory can be estimated with minimal latency. Unlike standard cameras that send frames at a fixed frame rate, a DVS only transmits pixel-level brightness changes (“events”) at the time they occur. Our method tracks spherical objects on the image plane using probabilistic trackers that are updated with each incoming event. The object's trajectory is estimated using an Extended Kalman Filter with a mixed state space that allows incorporation of both the object's dynamics and the measurement noise in the image plane. Using error-propagation techniques, we predict a collision if the 3σ-ellipsoid along the predicted trajectory intersects with a safety sphere around the quadrotor. We experimentally demonstrate that our method allows initiating evasive maneuvers early enough to avoid collisions.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We present a method to predict collisions with objects thrown at a quadrotor using a pair of dynamic vision sensors (DVS). Due to the micro-second temporal resolution of these sensors and the sparsity of their output, the object's trajectory can be estimated with minimal latency. Unlike standard cameras that send frames at a fixed frame rate, a DVS only transmits pixel-level brightness changes (“events”) at the time they occur. Our method tracks spherical objects on the image plane using probabilistic trackers that are updated with each incoming event. The object's trajectory is estimated using an Extended Kalman Filter with a mixed state space that allows incorporation of both the object's dynamics and the measurement noise in the image plane. Using error-propagation techniques, we predict a collision if the 3σ-ellipsoid along the predicted trajectory intersects with a safety sphere around the quadrotor. We experimentally demonstrate that our method allows initiating evasive maneuvers early enough to avoid collisions.
采用动态视觉传感器的四旋翼飞行器规避机动
我们提出了一种使用一对动态视觉传感器(DVS)预测四旋翼飞行器与投掷物体碰撞的方法。由于这些传感器的微秒级时间分辨率及其输出的稀疏性,可以以最小的延迟估计物体的轨迹。与以固定帧速率发送帧的标准摄像机不同,DVS仅在发生时传输像素级亮度变化(“事件”)。我们的方法使用随每个传入事件更新的概率跟踪器跟踪图像平面上的球形物体。使用扩展卡尔曼滤波器估计目标的轨迹,该滤波器具有混合状态空间,允许在图像平面中合并目标的动态和测量噪声。利用误差传播技术,我们预测了沿预测轨迹的3σ-椭球与四旋翼周围的安全球相交时会发生碰撞。我们通过实验证明,我们的方法允许尽早启动规避机动以避免碰撞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信