A public domain dataset for ADL recognition using wrist-placed accelerometers

Barbara Bruno, F. Mastrogiovanni, A. Sgorbissa
{"title":"A public domain dataset for ADL recognition using wrist-placed accelerometers","authors":"Barbara Bruno, F. Mastrogiovanni, A. Sgorbissa","doi":"10.1109/ROMAN.2014.6926341","DOIUrl":null,"url":null,"abstract":"The automatic monitoring of specific Activities of Daily Living (ADL) can be a useful tool for Human-Robot Interaction in smart environments and Assistive Robotics applications. The qualitative definition that is given for most ADL and the lack of well-defined benchmarks, however, are obstacles toward the identification of the most effective monitoring approaches for different tasks. The contribution of the article is two-fold: (i) we propose a taxonomy of ADL allowing for their categorization with respect to the most suitable monitoring approach; (ii) we present a freely available dataset of acceleration data, coming from a wrist-worn wearable device, targeting the recognition of 14 different human activities.","PeriodicalId":235810,"journal":{"name":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","volume":"412 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2014.6926341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

The automatic monitoring of specific Activities of Daily Living (ADL) can be a useful tool for Human-Robot Interaction in smart environments and Assistive Robotics applications. The qualitative definition that is given for most ADL and the lack of well-defined benchmarks, however, are obstacles toward the identification of the most effective monitoring approaches for different tasks. The contribution of the article is two-fold: (i) we propose a taxonomy of ADL allowing for their categorization with respect to the most suitable monitoring approach; (ii) we present a freely available dataset of acceleration data, coming from a wrist-worn wearable device, targeting the recognition of 14 different human activities.
ADL识别的公共领域数据集,使用手腕放置的加速度计
在智能环境和辅助机器人应用中,对特定日常生活活动(ADL)的自动监控可以成为人机交互的有用工具。然而,对大多数ADL给出的定性定义和缺乏明确定义的基准是确定针对不同任务的最有效监测方法的障碍。本文的贡献有两个方面:(i)我们提出了一种ADL的分类法,允许根据最合适的监测方法对其进行分类;(ii)我们提供了一个免费的加速度数据集,来自一个腕戴式可穿戴设备,目标是识别14种不同的人类活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信