Numerical Implementation of the Hopfield-Type Neural Networks from the MEVA Method in Remotely Sensed Images

L. Morales-Mendoza, O. Ibarra-Manzano, M.A. Cornejo-Conejo
{"title":"Numerical Implementation of the Hopfield-Type Neural Networks from the MEVA Method in Remotely Sensed Images","authors":"L. Morales-Mendoza, O. Ibarra-Manzano, M.A. Cornejo-Conejo","doi":"10.1109/CONIELECOMP.2009.46","DOIUrl":null,"url":null,"abstract":"In this paper we present a new outlook of the numerical approximation for implementing of the Hopfield-type Neural Networks (HNN) to the computational processing of Remotely Sensed Images (RSI). Here, we implemented the fused Maximum Entropy Variational Analysis (MEVA) method that presents the distinguished reconstruction strategy for image enhancing just by one process. The numerical implementation is based on the Jacobi and Gauss-Jordan Methods for solving the energy minimization problem. Therefore, we present several selected computer simulation examples where real images as addressed to illustrate the outstanding usefulness of this method. Likewise, we present some quantitative and qualitative analysis to the improvement of the new approximation of the MEVA method","PeriodicalId":292855,"journal":{"name":"2009 International Conference on Electrical, Communications, and Computers","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Electrical, Communications, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2009.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a new outlook of the numerical approximation for implementing of the Hopfield-type Neural Networks (HNN) to the computational processing of Remotely Sensed Images (RSI). Here, we implemented the fused Maximum Entropy Variational Analysis (MEVA) method that presents the distinguished reconstruction strategy for image enhancing just by one process. The numerical implementation is based on the Jacobi and Gauss-Jordan Methods for solving the energy minimization problem. Therefore, we present several selected computer simulation examples where real images as addressed to illustrate the outstanding usefulness of this method. Likewise, we present some quantitative and qualitative analysis to the improvement of the new approximation of the MEVA method
基于MEVA方法的hopfield型神经网络在遥感图像中的数值实现
本文提出了hopfield型神经网络(HNN)在遥感图像(RSI)计算处理中的数值逼近实现的新前景。在此,我们实现了融合最大熵变分分析(MEVA)方法,该方法仅通过一个过程就提供了图像增强的区分重建策略。数值实现是基于求解能量最小化问题的Jacobi和Gauss-Jordan方法。因此,我们提出了几个选择的计算机模拟的例子,其中真实的图像被处理,以说明这种方法的突出有用性。同样,我们也对MEVA方法新近似的改进进行了定量和定性分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信