Predicting Next Purchase Item on JXM Game by K-Means Clustering and ARIMAX Model

Thien Nguyen, Thanh Le, Bac Le
{"title":"Predicting Next Purchase Item on JXM Game by K-Means Clustering and ARIMAX Model","authors":"Thien Nguyen, Thanh Le, Bac Le","doi":"10.1109/NICS51282.2020.9335839","DOIUrl":null,"url":null,"abstract":"This paper is instructions for how to predict 5 next purchase items in “Vo Lam Truyen Ky Mobile” (JXM) which is a VNG's hot game. It's so hard to predict the next purchase item with a massive number of transactions per day. So, we analysed data to establish the solution to this problem. The solution make a prediction based on the past purchasing and in-game data with K-Means Clustering and ARIMAX model reaching accuracy about 70 percent. The research result can help to recommend items fit with users, improve user experience and may increase revenue.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is instructions for how to predict 5 next purchase items in “Vo Lam Truyen Ky Mobile” (JXM) which is a VNG's hot game. It's so hard to predict the next purchase item with a massive number of transactions per day. So, we analysed data to establish the solution to this problem. The solution make a prediction based on the past purchasing and in-game data with K-Means Clustering and ARIMAX model reaching accuracy about 70 percent. The research result can help to recommend items fit with users, improve user experience and may increase revenue.
基于k -均值聚类和ARIMAX模型的JXM游戏下一个购买项目预测
本文是关于如何预测VNG热门游戏《武林Truyen Ky Mobile》(JXM)下一个购买项目的说明。每天都有大量的交易,很难预测下一个购买项目。因此,我们通过分析数据来建立这个问题的解决方案。该方案利用K-Means聚类和ARIMAX模型对过去的购买和游戏数据进行预测,准确率约为70%。研究结果可以帮助推荐适合用户的商品,改善用户体验,并可能增加收入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信