The Modular Irregularity Strength of Triangular Book Graphs

M. Tilukay
{"title":"The Modular Irregularity Strength of Triangular Book Graphs","authors":"M. Tilukay","doi":"10.30598/tensorvol2iss2pp53-58","DOIUrl":null,"url":null,"abstract":"This paper deals with the modular irregularity strength of a graph of  vertices, a new graph invariant, modified from the well-known irregularity strength, by changing the condition of the vertex-weight set associate to the irregular labeling from  distinct positive integer to -the group of integer modulo . Investigating the triangular book graph , we first find the irregularity strength of triangular book graph , which is also the lower bound for the modular irregularity strength, and then construct a modular irregular -labeling. The result shows that triangular book graphs admit a modular irregular labeling and its modular irregularity strength and irregularity strength are equal, except for a small case.","PeriodicalId":294430,"journal":{"name":"Tensor: Pure and Applied Mathematics Journal","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tensor: Pure and Applied Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30598/tensorvol2iss2pp53-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the modular irregularity strength of a graph of  vertices, a new graph invariant, modified from the well-known irregularity strength, by changing the condition of the vertex-weight set associate to the irregular labeling from  distinct positive integer to -the group of integer modulo . Investigating the triangular book graph , we first find the irregularity strength of triangular book graph , which is also the lower bound for the modular irregularity strength, and then construct a modular irregular -labeling. The result shows that triangular book graphs admit a modular irregular labeling and its modular irregularity strength and irregularity strength are equal, except for a small case.
三角形书本图的模不规则强度
本文研究了顶点图的模不规则强度,这是一种新的图不变量,它是在已知的不规则强度的基础上改进而来的,它将与不规则标号相关联的顶点权值集的条件从不同的正整数改变为整数模群。对三角形书图进行研究,首先求出三角形书图的不规则强度,这也是模不规则强度的下界,然后构造一个模不规则标记。结果表明,除少数情况外,三角书图允许模不规则标记,且模不规则强度与不规则强度相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信