Solving multichain stochastic games with mean payoff by policy iteration

M. Akian, Jean Cochet-Terrasson, S. Detournay, S. Gaubert
{"title":"Solving multichain stochastic games with mean payoff by policy iteration","authors":"M. Akian, Jean Cochet-Terrasson, S. Detournay, S. Gaubert","doi":"10.1109/CDC.2013.6760149","DOIUrl":null,"url":null,"abstract":"Zero-sum stochastic games with finite state and action spaces, perfect information, and mean payoff criteria arise in particular from the monotone discretization of mean-payoff pursuit-evasion deterministic differential games. In that case no irreducibility assumption on the Markov chains associated to strategies are satisfied (multichain games). The value of such a game can be characterized by a system of nonlinear equations, involving the mean payoff vector and an auxiliary vector (relative value or bias). Cochet-Terrasson and Gaubert proposed in (C. R. Math. Acad. Sci. Paris, 2006) a policy iteration algorithm relying on a notion of nonlinear spectral projection (Akian and Gaubert, Nonlinear Analysis TMA, 2003), which allows one to avoid cycling in degenerate iterations. We give here a complete presentation of the algorithm, with details of implementation in particular of the nonlinear projection. This has led to the software PIGAMES and allowed us to present numerical results on pursuit-evasion games.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Zero-sum stochastic games with finite state and action spaces, perfect information, and mean payoff criteria arise in particular from the monotone discretization of mean-payoff pursuit-evasion deterministic differential games. In that case no irreducibility assumption on the Markov chains associated to strategies are satisfied (multichain games). The value of such a game can be characterized by a system of nonlinear equations, involving the mean payoff vector and an auxiliary vector (relative value or bias). Cochet-Terrasson and Gaubert proposed in (C. R. Math. Acad. Sci. Paris, 2006) a policy iteration algorithm relying on a notion of nonlinear spectral projection (Akian and Gaubert, Nonlinear Analysis TMA, 2003), which allows one to avoid cycling in degenerate iterations. We give here a complete presentation of the algorithm, with details of implementation in particular of the nonlinear projection. This has led to the software PIGAMES and allowed us to present numerical results on pursuit-evasion games.
用策略迭代法求解具有平均收益的多链随机对策
具有有限状态和行动空间、完美信息和平均收益标准的零和随机博弈是由平均收益追逐-逃避确定性微分博弈的单调离散化而产生的。在这种情况下,与策略相关的马尔可夫链的不可约性假设不被满足(多链博弈)。这种游戏的价值可以用非线性方程组来描述,包括平均收益向量和辅助向量(相对价值或偏差)。Cochet-Terrasson和Gaubert在C. R.数学中提出。学会科学。Paris, 2006)一种依赖于非线性谱投影概念的策略迭代算法(Akian和Gaubert,非线性分析TMA, 2003),它允许人们避免在退化迭代中循环。我们在这里给出了一个完整的算法,特别是非线性投影的实现细节。这导致了PIGAMES软件的出现,并允许我们在追逐-逃避游戏中呈现数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信