An EfficientNet-like Feature Extractor and Focal CTC Loss for Image-base Sequence Recognition

D. V. Sang, N. Thuan
{"title":"An EfficientNet-like Feature Extractor and Focal CTC Loss for Image-base Sequence Recognition","authors":"D. V. Sang, N. Thuan","doi":"10.1109/NICS51282.2020.9335861","DOIUrl":null,"url":null,"abstract":"Image-based sequence recognition is an interesting topic in computer vision, which has various potential applications in real life. This paper proposes a novel convolutional-recurrent neural network (CRNN) for image-based sequence recognition. Particularly, we introduce a new convolutional backbone network for feature extraction based on the EfficientNet architecture and use focal CTC loss to train the network. Our method beats several existing state-of-the-art methods on the ICDAR 2019 Robust Reading Challenge on Scanned Receipts OCR and Information Extraction (SROIE) challenge and the IAM handwriting dataset. The experimental results show that our method yields an F1 score equivalent to the top 2 on the ICDAR 2019 SROIE challenge.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image-based sequence recognition is an interesting topic in computer vision, which has various potential applications in real life. This paper proposes a novel convolutional-recurrent neural network (CRNN) for image-based sequence recognition. Particularly, we introduce a new convolutional backbone network for feature extraction based on the EfficientNet architecture and use focal CTC loss to train the network. Our method beats several existing state-of-the-art methods on the ICDAR 2019 Robust Reading Challenge on Scanned Receipts OCR and Information Extraction (SROIE) challenge and the IAM handwriting dataset. The experimental results show that our method yields an F1 score equivalent to the top 2 on the ICDAR 2019 SROIE challenge.
基于图像序列识别的高效网络特征提取器和焦点CTC损失
基于图像的序列识别是计算机视觉领域的一个有趣的研究课题,在现实生活中具有多种潜在的应用前景。提出了一种基于图像序列识别的卷积递归神经网络(CRNN)。特别地,我们引入了一种新的基于effentnet架构的卷积主干网络用于特征提取,并使用焦点CTC损失来训练网络。我们的方法在ICDAR 2019扫描收据OCR和信息提取(SROIE)挑战和IAM手写数据集上击败了几种现有的最先进的方法。实验结果表明,我们的方法产生的F1分数相当于ICDAR 2019 SROIE挑战的前2名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信