Sang Young Kim, Da Som Park, Se Eun Kim, M. Kang, D. Koo
{"title":"Knock-in Vector for Expression of Insulin-like Growth Factor 1 on the Bovine β-casein Gene Locus","authors":"Sang Young Kim, Da Som Park, Se Eun Kim, M. Kang, D. Koo","doi":"10.12749/RDB.2017.41.3.51","DOIUrl":null,"url":null,"abstract":"The production of therapeutic protein from transgenic domestic animal is the major technology of biotechnology. Insulin-like growth factor-1 (IGF-1) is known to play an important role in the growth of the animal. The objective of this study is construction of knock-in vector that bovine IGF-1 gene is inserted into the exon 7 locus of β-casein gene and expressed using the gene regulatory DNA sequence of bovine β-casein gene. The knock-in vector consists of 5’ arm region (1.02 kb), bIGF-1 cDNA, CMV-EGFP, and 3’ arm region (1.81 kb). To express bIGF-1 gene as transgene, the F2A sequence was fused to the 5’ terminal of bIGF-1 gene and inserted into exon 7 of the β-casein gene. As a result, the knock-in vector is confirmed that the amino acids are synthesized without termination from the β-casein exon 7 region to the bIGF-1 gene by DNA sequence. These knock-in vectors may help to create transgenic dairy cattle expressing bovine bIGF-1 protein in the mammary gland via the expression system of the bovine β-casein gene.","PeriodicalId":257457,"journal":{"name":"Reproductive and developmental Biology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive and developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12749/RDB.2017.41.3.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The production of therapeutic protein from transgenic domestic animal is the major technology of biotechnology. Insulin-like growth factor-1 (IGF-1) is known to play an important role in the growth of the animal. The objective of this study is construction of knock-in vector that bovine IGF-1 gene is inserted into the exon 7 locus of β-casein gene and expressed using the gene regulatory DNA sequence of bovine β-casein gene. The knock-in vector consists of 5’ arm region (1.02 kb), bIGF-1 cDNA, CMV-EGFP, and 3’ arm region (1.81 kb). To express bIGF-1 gene as transgene, the F2A sequence was fused to the 5’ terminal of bIGF-1 gene and inserted into exon 7 of the β-casein gene. As a result, the knock-in vector is confirmed that the amino acids are synthesized without termination from the β-casein exon 7 region to the bIGF-1 gene by DNA sequence. These knock-in vectors may help to create transgenic dairy cattle expressing bovine bIGF-1 protein in the mammary gland via the expression system of the bovine β-casein gene.