Fractional Gradient Based Optimization for Nonlinear Separable Data

Dian Puspita Hapsari, Muhammad Fahrur Rozi
{"title":"Fractional Gradient Based Optimization for Nonlinear Separable Data","authors":"Dian Puspita Hapsari, Muhammad Fahrur Rozi","doi":"10.31284/j.jasmet.2022.v3i1.2881","DOIUrl":null,"url":null,"abstract":"The Support Vector Machine or SVM classifier is one of the machine learning algorithms whose job is to predict data. Traditional classifier has limitations in the process of training large-scale data, tends to be slow. This study aims to increase the efficiency of the SVM classifier using a fractional gradient descent optimization algorithm, so that the speed of the data training process can be increased when using large-scale data. There are ten numerical data sets used in the simulation that are used to test the performance of the SVM classifier that has been optimized using the Caputo type fractional gradient descent algorithm. In this paper, we use the Caputo derivative formula to calculate the fractional-order gradient descent from the error function with respect to weights and obtain a deterministic convergence to increase the speed of the Caputo type fractional-order derivative convergence. The test results show that the optimized SVM classifier achieves a faster convergence time with iterations and a small error value. For further research, the optimized SVM linear classifier with fractional gradient descent is implemented on the problem of unbalanced class data.","PeriodicalId":426640,"journal":{"name":"Journal of Applied Sciences, Management and Engineering Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Sciences, Management and Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31284/j.jasmet.2022.v3i1.2881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Support Vector Machine or SVM classifier is one of the machine learning algorithms whose job is to predict data. Traditional classifier has limitations in the process of training large-scale data, tends to be slow. This study aims to increase the efficiency of the SVM classifier using a fractional gradient descent optimization algorithm, so that the speed of the data training process can be increased when using large-scale data. There are ten numerical data sets used in the simulation that are used to test the performance of the SVM classifier that has been optimized using the Caputo type fractional gradient descent algorithm. In this paper, we use the Caputo derivative formula to calculate the fractional-order gradient descent from the error function with respect to weights and obtain a deterministic convergence to increase the speed of the Caputo type fractional-order derivative convergence. The test results show that the optimized SVM classifier achieves a faster convergence time with iterations and a small error value. For further research, the optimized SVM linear classifier with fractional gradient descent is implemented on the problem of unbalanced class data.
基于分数梯度的非线性可分离数据优化
支持向量机或SVM分类器是一种机器学习算法,其工作是预测数据。传统分类器在训练大规模数据的过程中存在局限性,往往速度较慢。本研究旨在利用分数阶梯度下降优化算法提高SVM分类器的效率,从而在使用大规模数据时提高数据训练过程的速度。仿真中使用了十个数值数据集,用于测试使用Caputo类型分数梯度下降算法优化的SVM分类器的性能。本文利用Caputo导数公式计算误差函数相对于权重的分数阶梯度下降,得到了一个确定性收敛,从而提高了Caputo型分数阶导数收敛的速度。测试结果表明,优化后的SVM分类器具有迭代速度快、误差值小的特点。为进一步研究,针对非平衡类数据问题,实现了优化后的分数阶梯度下降SVM线性分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信