Ordenação entre potências simétricas nos inteiros positivos

R. Santos, José Eduardo Castilho, Antônio Luiz de Melo
{"title":"Ordenação entre potências simétricas nos inteiros positivos","authors":"R. Santos, José Eduardo Castilho, Antônio Luiz de Melo","doi":"10.35819/remat2023v9i2id6536","DOIUrl":null,"url":null,"abstract":"É comum que apareçam desafios matemáticos do tipo: qual é o maior valor, 20^(33) ou 33^(20)? Incentivados por esse tipo de problema de comparação entre potências simétricas, neste artigo demonstraremos que, para quaisquer que sejam x e y inteiros positivos, com y>x>1, vale a desigualdade (x^y)>(y^x), com exceção dos pares y=3, x=2 e y=4, x=2. Isto é, a menos dessas duas exceções, a potência x^y de maior expoente é maior que a potência y^x de maior base. Vamos utilizar, para tanto, o princípio de indução, derivadas elementares e o limite fundamental exponencial.","PeriodicalId":170779,"journal":{"name":"REMAT: Revista Eletrônica da Matemática","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"REMAT: Revista Eletrônica da Matemática","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35819/remat2023v9i2id6536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

É comum que apareçam desafios matemáticos do tipo: qual é o maior valor, 20^(33) ou 33^(20)? Incentivados por esse tipo de problema de comparação entre potências simétricas, neste artigo demonstraremos que, para quaisquer que sejam x e y inteiros positivos, com y>x>1, vale a desigualdade (x^y)>(y^x), com exceção dos pares y=3, x=2 e y=4, x=2. Isto é, a menos dessas duas exceções, a potência x^y de maior expoente é maior que a potência y^x de maior base. Vamos utilizar, para tanto, o princípio de indução, derivadas elementares e o limite fundamental exponencial.
正整数对称幂之间的排序
通常会出现这样的数学挑战:哪个值更大,20^(33)还是33^(20)?在这种对称幂比较问题的鼓励下,本文证明了对于任意正整数x和y, y>x>1,不等式(x^y)>(y^x)是有效的,除了y=3, x=2和y=4, x=2。也就是说,除了这两个例外,最高指数的幂x^y大于最高基的幂y^x。为此,我们将使用归纳原理、初等导数和指数基本极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信