{"title":"Run-time power and performance scaling with CPU-FPGA hybrids","authors":"J. Núñez-Yáñez, A. Beldachi","doi":"10.1109/AHS.2014.6880158","DOIUrl":null,"url":null,"abstract":"This paper investigates how a wide dynamic range of performance and power levels can be obtained in commercially available state-of-the-art hybrid FPGAs that include ARM embedded processors and independent power domains. Adaptive voltage and frequency scaling obtained with embedded in-situ detectors in a closed loop configuration is employed to scale performance and power in the FPGA fabric under processor control. The initial results are based on a high-performance motion estimation processor mapped to the FPGA fabric and show that it is possible to obtain energy savings higher than 60% or alternatively double performance at nominal energy. The available voltage and frequency margins in the device create a large number of performance and energy states with scaling possible at run-time with low overheads.","PeriodicalId":428581,"journal":{"name":"2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2014.6880158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
This paper investigates how a wide dynamic range of performance and power levels can be obtained in commercially available state-of-the-art hybrid FPGAs that include ARM embedded processors and independent power domains. Adaptive voltage and frequency scaling obtained with embedded in-situ detectors in a closed loop configuration is employed to scale performance and power in the FPGA fabric under processor control. The initial results are based on a high-performance motion estimation processor mapped to the FPGA fabric and show that it is possible to obtain energy savings higher than 60% or alternatively double performance at nominal energy. The available voltage and frequency margins in the device create a large number of performance and energy states with scaling possible at run-time with low overheads.