Radon transform processed neural network for lung X-ray image based diagnosis

Chethan Sharma, S. Basheer, Anish Francis, V. Jayakrishna
{"title":"Radon transform processed neural network for lung X-ray image based diagnosis","authors":"Chethan Sharma, S. Basheer, Anish Francis, V. Jayakrishna","doi":"10.1109/I2CT.2014.7092284","DOIUrl":null,"url":null,"abstract":"A novel method for image diagnosis with artificial learning is presented-ray images tuberculosis patients is subjected to neural network learning for prediction of diagnosis. The X-ray images of lungs are normally difficult for diagnosis, since its similarity to lung cancer. Under and over diagnosis of lung X-ray images is a difficult medical problem to resolve. In the present work radon transform of the x-ray images is fed to back propagation neural network trained with Levenberg algorithm. The present methodology gives sharp results, distincting the normal and abnormal images.","PeriodicalId":384966,"journal":{"name":"International Conference for Convergence for Technology-2014","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference for Convergence for Technology-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT.2014.7092284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel method for image diagnosis with artificial learning is presented-ray images tuberculosis patients is subjected to neural network learning for prediction of diagnosis. The X-ray images of lungs are normally difficult for diagnosis, since its similarity to lung cancer. Under and over diagnosis of lung X-ray images is a difficult medical problem to resolve. In the present work radon transform of the x-ray images is fed to back propagation neural network trained with Levenberg algorithm. The present methodology gives sharp results, distincting the normal and abnormal images.
基于Radon变换的神经网络肺x线图像诊断
提出了一种新的基于人工学习的图像诊断方法,对射线图像肺结核患者进行神经网络学习预测诊断。肺部的x线图像通常难以诊断,因为它与肺癌相似。肺x线影像的过低诊断是一个难以解决的医学问题。本文将x射线图像的氡变换反馈到用Levenberg算法训练的反向传播神经网络中。目前的方法给出了清晰的结果,区分正常和异常图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信