Using fuzzy sugeno integral as an aggregation operator of ensemble of fuzzy decision trees in the recognition of HER2 breast cancer histopathology images

M. Tabakov, Szymon Zareba, Marzenna Podhorska-Okołów, B. Puła
{"title":"Using fuzzy sugeno integral as an aggregation operator of ensemble of fuzzy decision trees in the recognition of HER2 breast cancer histopathology images","authors":"M. Tabakov, Szymon Zareba, Marzenna Podhorska-Okołów, B. Puła","doi":"10.1109/ICCMA.2013.6506188","DOIUrl":null,"url":null,"abstract":"In this paper a decision making support system based on fuzzy logic is considered. The examined decision problem is related to the problem of recognition of histopathology images with respect to the degree of HER2/neu receptor overexpression. We used fuzzy decision trees, defined over different sets of image features, as separate image classifiers. Then, the corresponding classifiers results were aggregated with the fuzzy Sugeno integral to make final recognition decision. The proposed approach was tested over real clinical data of HER2 breast cancer histopathology images.","PeriodicalId":187834,"journal":{"name":"2013 International Conference on Computer Medical Applications (ICCMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Computer Medical Applications (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA.2013.6506188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper a decision making support system based on fuzzy logic is considered. The examined decision problem is related to the problem of recognition of histopathology images with respect to the degree of HER2/neu receptor overexpression. We used fuzzy decision trees, defined over different sets of image features, as separate image classifiers. Then, the corresponding classifiers results were aggregated with the fuzzy Sugeno integral to make final recognition decision. The proposed approach was tested over real clinical data of HER2 breast cancer histopathology images.
利用模糊sugeno积分作为模糊决策树集合的聚合算子在HER2乳腺癌组织病理图像识别中应用
本文研究了一种基于模糊逻辑的决策支持系统。所研究的决策问题与组织病理学图像的识别问题有关,与HER2/neu受体过表达的程度有关。我们使用模糊决策树,定义在不同的图像特征集上,作为单独的图像分类器。然后,将相应的分类器结果与模糊Sugeno积分进行汇总,做出最终的识别决策。提出的方法在HER2乳腺癌组织病理学图像的真实临床数据上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信