RGB-D Camera based 3D Human Mouth Detection and Tracking Towards Robotic Feeding Assistance

Qinyuan Fang, Maria Kyrarini, Danijela Ristić-Durrant, A. Gräser
{"title":"RGB-D Camera based 3D Human Mouth Detection and Tracking Towards Robotic Feeding Assistance","authors":"Qinyuan Fang, Maria Kyrarini, Danijela Ristić-Durrant, A. Gräser","doi":"10.1145/3197768.3201576","DOIUrl":null,"url":null,"abstract":"In this paper, an RGB-D camera based framework for the recognition and tracking of the human mouth for the purpose of autonomous r obotic feeding is presented. The method employs the state-of-the-art face detection algorithm to acquire the 2D facial landmarks, and the corresponding 3D position of the human mouth is calculated using the depth information. In addition, a 3D point cloud visualizer of the human face with marked facial landmarks is provided for the purpose of visualization. The proposed system is applied in real-time vision-based robot control. Experiments indicate the validity of the proposed work in localising the mouth of different subjects served by the robot with a cup of water.","PeriodicalId":130190,"journal":{"name":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3197768.3201576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, an RGB-D camera based framework for the recognition and tracking of the human mouth for the purpose of autonomous r obotic feeding is presented. The method employs the state-of-the-art face detection algorithm to acquire the 2D facial landmarks, and the corresponding 3D position of the human mouth is calculated using the depth information. In addition, a 3D point cloud visualizer of the human face with marked facial landmarks is provided for the purpose of visualization. The proposed system is applied in real-time vision-based robot control. Experiments indicate the validity of the proposed work in localising the mouth of different subjects served by the robot with a cup of water.
基于RGB-D相机的三维人体口腔检测与跟踪研究
本文提出了一种基于RGB-D相机的人体口腔识别与跟踪框架,用于机器人自主进食。该方法采用最先进的人脸检测算法获取二维面部地标,并利用深度信息计算出相应的人体口腔三维位置。此外,还提供了具有标记面部地标的人脸三维点云可视化器,用于可视化。该系统已应用于基于视觉的机器人实时控制中。实验结果表明,所提出的方法在机器人端来一杯水的不同对象的嘴部定位中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信