Trajectory feature fusion for human action recognition

S. Megrhi, Azeddine Beghdadi, W. Souidène
{"title":"Trajectory feature fusion for human action recognition","authors":"S. Megrhi, Azeddine Beghdadi, W. Souidène","doi":"10.1109/EUVIP.2014.7018409","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of human action detection/recognition by investigating interest points (IP) trajectory cues and by reducing undesirable small camera motion. We first detect speed up robust feature (SURF) to segment video into frame volume (FV) that contains small actions. This segmentation relies on IP trajectory tracking. Then, for each FV, we extract optical flow of every detected SURF. Finally, a parametrization of the optical flow leads to displacement segments. These features are concatenated into a trajectory feature in order to describe the trajectory of IP upon a FV. We reduce the impact of camera motion by considering moving IPs beyond a minimum motion angle and by using motion boundary histogram (MBH). Feature-fusion based action recognition is performed to generate robust and discriminative codebook using K-mean clustering. We employ a bag-of-visual-words Support Vector Machine (SVM) approach for the learning /testing step. Through an extensive experimental evaluation carried out on the challenging UCF sports datasets, we show the efficiency of the proposed method by achieving 83.5% of accuracy.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper addresses the problem of human action detection/recognition by investigating interest points (IP) trajectory cues and by reducing undesirable small camera motion. We first detect speed up robust feature (SURF) to segment video into frame volume (FV) that contains small actions. This segmentation relies on IP trajectory tracking. Then, for each FV, we extract optical flow of every detected SURF. Finally, a parametrization of the optical flow leads to displacement segments. These features are concatenated into a trajectory feature in order to describe the trajectory of IP upon a FV. We reduce the impact of camera motion by considering moving IPs beyond a minimum motion angle and by using motion boundary histogram (MBH). Feature-fusion based action recognition is performed to generate robust and discriminative codebook using K-mean clustering. We employ a bag-of-visual-words Support Vector Machine (SVM) approach for the learning /testing step. Through an extensive experimental evaluation carried out on the challenging UCF sports datasets, we show the efficiency of the proposed method by achieving 83.5% of accuracy.
基于轨迹特征融合的人体动作识别
本文通过研究兴趣点(IP)轨迹线索和减少不受欢迎的小摄像机运动来解决人类动作检测/识别问题。我们首先检测加速鲁棒特征(SURF),将视频分割成包含小动作的帧体积(FV)。这种分割依赖于IP轨迹跟踪。然后,对于每个FV,我们提取每个检测到的SURF的光流。最后,对光流进行参数化,得到位移段。这些特征被连接成一个轨迹特征,以描述IP在FV上的轨迹。我们通过考虑移动ip超过最小运动角度和使用运动边界直方图(MBH)来减少摄像机运动的影响。基于特征融合的动作识别采用k -均值聚类方法生成鲁棒性和判别性强的码本。我们采用视觉词袋支持向量机(SVM)方法进行学习/测试步骤。通过对具有挑战性的UCF运动数据集进行广泛的实验评估,我们证明了该方法的有效性,达到了83.5%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信