{"title":"Factors affecting fuel consumption of tractor operating active tillage implement and its prediction","authors":"V. Shobhan Naik, H. Raheman","doi":"10.1016/j.eaef.2019.11.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>Fuel consumption and power take-off (PTO) power requirement were measured for a 33.8 kW two-wheel drive tractor when used for operating a 1.6 m rotavator with 36 “L” shaped blades in sandy clay loam soil at an average soil </span>moisture content of 8.8 ± 1% (dry basis) at IIT Kharagpur, India. Field experiments were conducted for a tractor with rotavator at seven different engine speeds (between 35 and 75% of full throttle engine speed), gear settings (L2 and L3) and depths of operation (60, 80 and 100 mm). Depth of operation, engine speed and gear setting were found to affect the fuel consumption of tractor. For the same PTO power consumption, lesser fuel consumption of tractor was observed in gear up conditions. A variation from −3.60 to −19.67% was observed while comparing the observed fuel consumption values with those predicted by the American Society of Agricultural and Biological Engineers (ASABE D 497.7) model. These variations were due to non-inclusion of gear settings in the ASABE fuel consumption model. Hence, an attempt was made to modify the ASABE fuel consumption model by incorporating gear settings in terms of speed ratio (peripheral speed of the rotavator to forward speed of the tractor i.e. u/v ratio). The developed fuel consumption model comprising engine speed, PTO power consumption and u/v could predict the observed values with a variation of ±6%.</p></div>","PeriodicalId":38965,"journal":{"name":"Engineering in Agriculture, Environment and Food","volume":"12 4","pages":"Pages 548-555"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Agriculture, Environment and Food","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1881836616300945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5
Abstract
Fuel consumption and power take-off (PTO) power requirement were measured for a 33.8 kW two-wheel drive tractor when used for operating a 1.6 m rotavator with 36 “L” shaped blades in sandy clay loam soil at an average soil moisture content of 8.8 ± 1% (dry basis) at IIT Kharagpur, India. Field experiments were conducted for a tractor with rotavator at seven different engine speeds (between 35 and 75% of full throttle engine speed), gear settings (L2 and L3) and depths of operation (60, 80 and 100 mm). Depth of operation, engine speed and gear setting were found to affect the fuel consumption of tractor. For the same PTO power consumption, lesser fuel consumption of tractor was observed in gear up conditions. A variation from −3.60 to −19.67% was observed while comparing the observed fuel consumption values with those predicted by the American Society of Agricultural and Biological Engineers (ASABE D 497.7) model. These variations were due to non-inclusion of gear settings in the ASABE fuel consumption model. Hence, an attempt was made to modify the ASABE fuel consumption model by incorporating gear settings in terms of speed ratio (peripheral speed of the rotavator to forward speed of the tractor i.e. u/v ratio). The developed fuel consumption model comprising engine speed, PTO power consumption and u/v could predict the observed values with a variation of ±6%.
期刊介绍:
Engineering in Agriculture, Environment and Food (EAEF) is devoted to the advancement and dissemination of scientific and technical knowledge concerning agricultural machinery, tillage, terramechanics, precision farming, agricultural instrumentation, sensors, bio-robotics, systems automation, processing of agricultural products and foods, quality evaluation and food safety, waste treatment and management, environmental control, energy utilization agricultural systems engineering, bio-informatics, computer simulation, computational mechanics, farm work systems and mechanized cropping. It is an international English E-journal published and distributed by the Asian Agricultural and Biological Engineering Association (AABEA). Authors should submit the manuscript file written by MS Word through a web site. The manuscript must be approved by the author''s organization prior to submission if required. Contact the societies which you belong to, if you have any question on manuscript submission or on the Journal EAEF.