Lucas A. Martins, Guilherme A. M. Sborz, Felipe Viel, C. Zeferino
{"title":"An SVM-based Hardware Accelerator for Onboard Classification of Hyperspectral Images","authors":"Lucas A. Martins, Guilherme A. M. Sborz, Felipe Viel, C. Zeferino","doi":"10.1145/3338852.3339869","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSIs) have been used in civil and military scenarios for ground recognition, urban development management, rare minerals identification, and diverse other purposes. However, HSIs have a significant volume of information and require high computational power, especially for real-time processing in embedded applications, as in onboard computers in satellites. These issues have driven the development of hardware-based solutions able to provide the processing power necessary to meet such requirements. In this paper, we present a hardware accelerator to enhance the performance of one of the most computational expensive stages of HSI processing: the classification. We have employed the Entropy Multiple Correlation Ratio procedure to select the spectral bands to be used in the training process. For the classification step, we have applied a Support Vector Machine classifier with a Hamming Distance decision approach. The proposed custom processor was implemented in FPGA and compared with high-level implementations. The results obtained demonstrate that the processor has a silicon cost lower than similar solutions and can perform a realtime pixel classification in 0.1 ms and achieves a state-of-the-art accuracy of 99.7%.","PeriodicalId":184401,"journal":{"name":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd Symposium on Integrated Circuits and Systems Design (SBCCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338852.3339869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Hyperspectral images (HSIs) have been used in civil and military scenarios for ground recognition, urban development management, rare minerals identification, and diverse other purposes. However, HSIs have a significant volume of information and require high computational power, especially for real-time processing in embedded applications, as in onboard computers in satellites. These issues have driven the development of hardware-based solutions able to provide the processing power necessary to meet such requirements. In this paper, we present a hardware accelerator to enhance the performance of one of the most computational expensive stages of HSI processing: the classification. We have employed the Entropy Multiple Correlation Ratio procedure to select the spectral bands to be used in the training process. For the classification step, we have applied a Support Vector Machine classifier with a Hamming Distance decision approach. The proposed custom processor was implemented in FPGA and compared with high-level implementations. The results obtained demonstrate that the processor has a silicon cost lower than similar solutions and can perform a realtime pixel classification in 0.1 ms and achieves a state-of-the-art accuracy of 99.7%.