{"title":"Post-user-selection quantization and estimation of correlated Frobenius and spectral channel norms","authors":"Emil Björnson, B. Ottersten","doi":"10.1109/PIMRC.2008.4699922","DOIUrl":null,"url":null,"abstract":"This paper considers quantization and exact minimum mean square error (MMSE) estimation of the squared Frobenius norm and the squared spectral norm of a Rayleigh fading multiple-input multiple-output (MIMO) channel with one-sided spatial correlation. The Frobenius and spectral norms are of great importance when describing the achievable capacity of many wireless communication systems; in particularly, they correspond to the signal-to-noise ratio (SNR) of space-time block coded and maximum ratio combining transmissions, respectively. Herein, a general quantization framework is presented, where the quantization levels are determined to maximize the feedback entropy. Quantization based on the post-user-selection distribution is discussed, and analyzed for a specific scheduler. Finally, exact results on MMSE estimation of the capacity and the SNR, conditioned on a quantized channel norm, are presented.","PeriodicalId":125554,"journal":{"name":"2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2008.4699922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper considers quantization and exact minimum mean square error (MMSE) estimation of the squared Frobenius norm and the squared spectral norm of a Rayleigh fading multiple-input multiple-output (MIMO) channel with one-sided spatial correlation. The Frobenius and spectral norms are of great importance when describing the achievable capacity of many wireless communication systems; in particularly, they correspond to the signal-to-noise ratio (SNR) of space-time block coded and maximum ratio combining transmissions, respectively. Herein, a general quantization framework is presented, where the quantization levels are determined to maximize the feedback entropy. Quantization based on the post-user-selection distribution is discussed, and analyzed for a specific scheduler. Finally, exact results on MMSE estimation of the capacity and the SNR, conditioned on a quantized channel norm, are presented.