An Optimised Deep Neural Network Approach for Forest Trail Navigation for UAV Operation within the Forest Canopy

Bruna G. Maciel-Pearson, Pratrice Carbonneu, T. Breckon
{"title":"An Optimised Deep Neural Network Approach for Forest Trail Navigation for UAV Operation within the Forest Canopy","authors":"Bruna G. Maciel-Pearson, Pratrice Carbonneu, T. Breckon","doi":"10.31256/ukras17.7","DOIUrl":null,"url":null,"abstract":"Autonomous flight within a forest canopy represents a key challenge for generalised scene understanding \non-board a future Unmanned Aerial Vehicle (UAV) platform. Here we present an approach for automatic \ntrail navigation within such an environment that successfully generalises across differing image resolutions - \nallowing UAV with varying sensor payload capabilities to operate equally in such challenging environmental \nconditions. Specifically, this work presents an optimised deep neural network architecture, capable of stateof-the-art \nperformance across varying resolution aerial UAV imagery, that improves forest trail detection for \nUAV guidance even when using significantly low resolution images that are representative of low-cost search \nand rescue capable UAV platforms.","PeriodicalId":392429,"journal":{"name":"UK-RAS Conference: Robots Working For and Among Us Proceedings","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS Conference: Robots Working For and Among Us Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/ukras17.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Autonomous flight within a forest canopy represents a key challenge for generalised scene understanding on-board a future Unmanned Aerial Vehicle (UAV) platform. Here we present an approach for automatic trail navigation within such an environment that successfully generalises across differing image resolutions - allowing UAV with varying sensor payload capabilities to operate equally in such challenging environmental conditions. Specifically, this work presents an optimised deep neural network architecture, capable of stateof-the-art performance across varying resolution aerial UAV imagery, that improves forest trail detection for UAV guidance even when using significantly low resolution images that are representative of low-cost search and rescue capable UAV platforms.
基于优化深度神经网络的无人机林下航迹导航
森林冠层内的自主飞行是未来无人机(UAV)平台上通用场景理解的关键挑战。在这里,我们提出了一种在这样的环境中自动跟踪导航的方法,该方法成功地推广了不同的图像分辨率-允许具有不同传感器有效载荷能力的无人机在这种具有挑战性的环境条件下平等地运行。具体来说,这项工作提出了一个优化的深度神经网络架构,能够在不同分辨率的空中无人机图像中实现最先进的性能,即使在使用低成本搜索和救援能力无人机平台代表的低分辨率图像时,也能改善无人机制导的森林路径检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信