Cramer-Rao bounds on eigenvalue estimates from impulse response data: The multi-observation case

Jackeline Abad Torres, Sandip Roy
{"title":"Cramer-Rao bounds on eigenvalue estimates from impulse response data: The multi-observation case","authors":"Jackeline Abad Torres, Sandip Roy","doi":"10.1109/CDC.2012.6426627","DOIUrl":null,"url":null,"abstract":"We examine the effect of having multiple observations in the estimation of non-random modes of linear dynamical systems from noisy impulse response data. Specifically, for this estimation problem, we develop an explicit algebraic characterization of the Fisher information matrix and hence Cramer-Rao bound in terms of the eigenvalues and residues of the transfer function, and so develop some simple bounds on the minimum possible error variance for eigenvalue estimates in terms of the eigenvalues' locations. We focus especially on developing a relationship between the Cramer-Rao bound on pole estimates for the multi-observation case, and those when each single observation is used separately for estimation.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We examine the effect of having multiple observations in the estimation of non-random modes of linear dynamical systems from noisy impulse response data. Specifically, for this estimation problem, we develop an explicit algebraic characterization of the Fisher information matrix and hence Cramer-Rao bound in terms of the eigenvalues and residues of the transfer function, and so develop some simple bounds on the minimum possible error variance for eigenvalue estimates in terms of the eigenvalues' locations. We focus especially on developing a relationship between the Cramer-Rao bound on pole estimates for the multi-observation case, and those when each single observation is used separately for estimation.
脉冲响应数据特征值估计的Cramer-Rao界:多观测情况
我们研究了从有噪声的脉冲响应数据估计线性动力系统的非随机模式时具有多个观测值的影响。具体地说,对于这个估计问题,我们建立了Fisher信息矩阵的显式代数表征,从而建立了基于传递函数的特征值和残数的Cramer-Rao界,从而建立了基于特征值位置的特征值估计的最小可能误差方差的简单界。我们特别关注多观测情况下极点估计的Cramer-Rao界与单独使用单个观测值进行估计的极点估计之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信