{"title":"Contact Fatigue Failure of an Axle Shaft Spur Pinion","authors":"Lester E. Alban","doi":"10.31399/asm.fach.auto.c9001498","DOIUrl":null,"url":null,"abstract":"\n One end of an axle shaft containing the integral spur pinion was submitted for examination, along with the report of a tooth pitting failure. The spur pinion, integral to the axle shaft, operated in a medium-size, off-highway truck at an open-pit mine, for “a relatively short time.” Only the pinion head had been returned. The shaft portion had been torch-cut away. Chemical analysis along with the microstructure confirmed the specified material was SAE 43BV12 Ni-Cr-Mo alloy steel. The mode of failure was surface contact fatigue through the shear plane subsurface at the lowest point of single-tooth contact. The cause of failure was tooth-tip interference from the mating gear teeth. Because the mating parts within the assembly had not been returned or examined, unanswered questions remained.","PeriodicalId":235345,"journal":{"name":"ASM Failure Analysis Case Histories: Automobiles and Trucks","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Automobiles and Trucks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.auto.c9001498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One end of an axle shaft containing the integral spur pinion was submitted for examination, along with the report of a tooth pitting failure. The spur pinion, integral to the axle shaft, operated in a medium-size, off-highway truck at an open-pit mine, for “a relatively short time.” Only the pinion head had been returned. The shaft portion had been torch-cut away. Chemical analysis along with the microstructure confirmed the specified material was SAE 43BV12 Ni-Cr-Mo alloy steel. The mode of failure was surface contact fatigue through the shear plane subsurface at the lowest point of single-tooth contact. The cause of failure was tooth-tip interference from the mating gear teeth. Because the mating parts within the assembly had not been returned or examined, unanswered questions remained.