H. Kundur, E. Klumperink, B. Nauta, V. Srinivasan, Ali Kiaei
{"title":"RF transconductor linearization technique robust to process, voltage and temperature variations","authors":"H. Kundur, E. Klumperink, B. Nauta, V. Srinivasan, Ali Kiaei","doi":"10.1109/ASSCC.2014.7008928","DOIUrl":null,"url":null,"abstract":"A new reconfigurable linearized low noise transconductance amplifier (LNTA) design for a software-defined radio receiver is presented. The transconductor design aims at realizing high linearity at RF in a way that is robust for Process, Voltage and Temperature variations. It exploits resistive degeneration in combination with a floating battery by-pass circuit and replica biasing to improve IIP3 in a robust way. The LNTA with current domain mixer is implemented in a 45nm CMOS process. Compared to an inverter based LNTA with the same transconductance, it improves PIIP3 from 2 dBm to a robust PIIP3 of 8 dBm at the cost of 67% increase in power consumption.","PeriodicalId":161031,"journal":{"name":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2014.7008928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A new reconfigurable linearized low noise transconductance amplifier (LNTA) design for a software-defined radio receiver is presented. The transconductor design aims at realizing high linearity at RF in a way that is robust for Process, Voltage and Temperature variations. It exploits resistive degeneration in combination with a floating battery by-pass circuit and replica biasing to improve IIP3 in a robust way. The LNTA with current domain mixer is implemented in a 45nm CMOS process. Compared to an inverter based LNTA with the same transconductance, it improves PIIP3 from 2 dBm to a robust PIIP3 of 8 dBm at the cost of 67% increase in power consumption.