Ammar Karkar, Ra'ed Al-Dujaily, A. Yakovlev, K. Tong, T. Mak
{"title":"Surface wave communication system for on-chip and off-chip interconnects","authors":"Ammar Karkar, Ra'ed Al-Dujaily, A. Yakovlev, K. Tong, T. Mak","doi":"10.1145/2401716.2401720","DOIUrl":null,"url":null,"abstract":"Network-on-chip (NoC) is a communication paradigm that has emerged to tackle different on-chip challenges and satisfy different demands in terms of high performance and economical interconnect implementation. However, merely metal based interconnect pursuit offers limited scalability with the relentless technology scaling. To meet the scalability demand, this paper proposes a new hybrid interconnect fabric empowered by metal interconnect NoC and Zenneck surface Waves Interconnect (SWI) technology. Our initial results show a considerable power reduction (9 to 17%) and performance improvement (35%) of the proposed hybrid architecture compared to regular NoC. These results are achieved over relatively small hardware and area overhead (2.29% of die). This paper explores promising potentials of SWI for future System-on-Chip (SoC) global communication.","PeriodicalId":344147,"journal":{"name":"Network on Chip Architectures","volume":"300 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network on Chip Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2401716.2401720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Network-on-chip (NoC) is a communication paradigm that has emerged to tackle different on-chip challenges and satisfy different demands in terms of high performance and economical interconnect implementation. However, merely metal based interconnect pursuit offers limited scalability with the relentless technology scaling. To meet the scalability demand, this paper proposes a new hybrid interconnect fabric empowered by metal interconnect NoC and Zenneck surface Waves Interconnect (SWI) technology. Our initial results show a considerable power reduction (9 to 17%) and performance improvement (35%) of the proposed hybrid architecture compared to regular NoC. These results are achieved over relatively small hardware and area overhead (2.29% of die). This paper explores promising potentials of SWI for future System-on-Chip (SoC) global communication.