Demonstration of Principal Component Analysis on TI-86

C. Stuerke
{"title":"Demonstration of Principal Component Analysis on TI-86","authors":"C. Stuerke","doi":"10.1109/TPSD.2008.4562756","DOIUrl":null,"url":null,"abstract":"We often measure a variety of features when attempting to perform classification. Principal component analysis (PCA) can assist the multivariate investigation by reducing dimensionality and by maximizing feature space variance. For demonstration, this paper shows the techniques for finding the improved feature space and it shows how to project data into this space, using the native commands of the TI-86 calculator.","PeriodicalId":410786,"journal":{"name":"2008 IEEE Region 5 Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 5 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPSD.2008.4562756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We often measure a variety of features when attempting to perform classification. Principal component analysis (PCA) can assist the multivariate investigation by reducing dimensionality and by maximizing feature space variance. For demonstration, this paper shows the techniques for finding the improved feature space and it shows how to project data into this space, using the native commands of the TI-86 calculator.
TI-86的主成分分析论证
在尝试进行分类时,我们经常测量各种各样的特征。主成分分析(PCA)可以通过降维和最大化特征空间方差来辅助多变量分析。为了演示,本文展示了寻找改进的特征空间的技术,并展示了如何使用TI-86计算器的本地命令将数据投影到该空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信