Sensor Individual Non-Orthogonality Correction in Low-Cost MEMS Gyroscopes Using Neural Networks

Patrick Tritschler, T. Hiller, T. Ohms, Wolfram Mayer, A. Zimmermann
{"title":"Sensor Individual Non-Orthogonality Correction in Low-Cost MEMS Gyroscopes Using Neural Networks","authors":"Patrick Tritschler, T. Hiller, T. Ohms, Wolfram Mayer, A. Zimmermann","doi":"10.1109/INERTIAL56358.2023.10103806","DOIUrl":null,"url":null,"abstract":"The research presented in this work compensates non-orthogonality over temperature stress effects in low-cost open-loop MEMS gyroscopes using neural networks (NN) for a sensor individual compensation to improve the sensor performance. The non-orthogonality is included in the sensor cross-axis sensitivity (CAS) of MEMS gyroscopes. Using the model-agnostic meta-learning algorithm (MAML) as a self-calibration algorithm and one initial measurement after soldering, an individual compensation model is generated for each sensor that predicts the non-orthogonality using the MEMS gyroscope's quadrature value as an input. It will be shown that a sensor-individual model outperforms a compensation model that should fit for all sensors at once like linear regression or classic NN and improves the non-orthogonality by 82.7 %, 7.5 % and 70 % for yx-, zx-, and zy-non-orthogonality,","PeriodicalId":236326,"journal":{"name":"2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL56358.2023.10103806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The research presented in this work compensates non-orthogonality over temperature stress effects in low-cost open-loop MEMS gyroscopes using neural networks (NN) for a sensor individual compensation to improve the sensor performance. The non-orthogonality is included in the sensor cross-axis sensitivity (CAS) of MEMS gyroscopes. Using the model-agnostic meta-learning algorithm (MAML) as a self-calibration algorithm and one initial measurement after soldering, an individual compensation model is generated for each sensor that predicts the non-orthogonality using the MEMS gyroscope's quadrature value as an input. It will be shown that a sensor-individual model outperforms a compensation model that should fit for all sensors at once like linear regression or classic NN and improves the non-orthogonality by 82.7 %, 7.5 % and 70 % for yx-, zx-, and zy-non-orthogonality,
基于神经网络的低成本MEMS陀螺仪传感器个体非正交校正
本研究采用神经网络(NN)对低成本开环MEMS陀螺仪的非正交性温度应力效应进行补偿,以提高传感器的性能。MEMS陀螺仪的传感器跨轴灵敏度(CAS)包含了非正交性。采用与模型无关的元学习算法(MAML)作为自校准算法,并在焊接后进行一次初始测量,为每个传感器生成一个单独的补偿模型,该模型使用MEMS陀螺仪的正交值作为输入来预测非正交性。结果将表明,传感器个体模型优于补偿模型,补偿模型应该同时适合所有传感器,如线性回归或经典神经网络,并且对于yx-, zx-和zy-非正交性,非正交性分别提高82.7%,7.5%和70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信