Marco Trevisi, R. Carmona-Galán, J. Fernández-Berni, Á. Rodríguez-Vázquez
{"title":"On the design of a sparsifying dictionary for compressive image feature extraction","authors":"Marco Trevisi, R. Carmona-Galán, J. Fernández-Berni, Á. Rodríguez-Vázquez","doi":"10.1109/ICECS.2015.7440410","DOIUrl":null,"url":null,"abstract":"Compressive sensing is an alternative to Nyquist-rate sampling when the signal to be acquired is known to be sparse or compressible. A sparse signal has a small number of nonzero components compared to its total length. This property can either exist either in the sampling domain, i. e. time or space, or with respect to a transform basis. There is a parallel between representing a signal in a compressed domain and feature extraction. In both cases, there is an effort to reduce the amount of resources required to describe a large set of data. A given feature is often represented by a set of parameters, which only acquire a relevant value in a few points in the image plane. Although there are some works reported on feature extraction from compressed samples, none of them considers the implementation of the feature extractor as a part of the sensor itself. Our approach is to introduce a sparsifying dictionary, feasibly implementable at the focal plane, which describes the image in terms of features. This allows a standard reconstruction algorithm to directly recover the interesting image features, discarding the irrelevant information. In order to validate the approach, we have integrated a Harris-Stephens corner detector into the compressive sampling process. We have evaluated the accuracy of the reconstructed corners compared to applying the detector to a reconstructed image.","PeriodicalId":215448,"journal":{"name":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2015.7440410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Compressive sensing is an alternative to Nyquist-rate sampling when the signal to be acquired is known to be sparse or compressible. A sparse signal has a small number of nonzero components compared to its total length. This property can either exist either in the sampling domain, i. e. time or space, or with respect to a transform basis. There is a parallel between representing a signal in a compressed domain and feature extraction. In both cases, there is an effort to reduce the amount of resources required to describe a large set of data. A given feature is often represented by a set of parameters, which only acquire a relevant value in a few points in the image plane. Although there are some works reported on feature extraction from compressed samples, none of them considers the implementation of the feature extractor as a part of the sensor itself. Our approach is to introduce a sparsifying dictionary, feasibly implementable at the focal plane, which describes the image in terms of features. This allows a standard reconstruction algorithm to directly recover the interesting image features, discarding the irrelevant information. In order to validate the approach, we have integrated a Harris-Stephens corner detector into the compressive sampling process. We have evaluated the accuracy of the reconstructed corners compared to applying the detector to a reconstructed image.