Web site classification based on URL and content: Algerian vs. non-Algerian case

Abdessamed Ouessai, Elberrichi Zakaria
{"title":"Web site classification based on URL and content: Algerian vs. non-Algerian case","authors":"Abdessamed Ouessai, Elberrichi Zakaria","doi":"10.1109/ISPS.2015.7244974","DOIUrl":null,"url":null,"abstract":"Web page classification based on topic or sentiments is a common application of web content mining techniques. In this paper we will present a novel application intended to identify the nation targeted by a specific web page. The aim is to be able to automatically distinguish websites targeting a specific nation, using both the URL and the content of a web page. In this paper we will address the issue of identifying Algerian-interest web pages using a machine learning approach. We will present the process of acquiring data for the supervised learning phase and adapting it into a usable dataset, as well as using it to construct three distinct classifiers using different parts of the data. The resulting classifiers have shown outstanding performances (up to F-score = 0.93) for such application.","PeriodicalId":165465,"journal":{"name":"2015 12th International Symposium on Programming and Systems (ISPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Symposium on Programming and Systems (ISPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPS.2015.7244974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Web page classification based on topic or sentiments is a common application of web content mining techniques. In this paper we will present a novel application intended to identify the nation targeted by a specific web page. The aim is to be able to automatically distinguish websites targeting a specific nation, using both the URL and the content of a web page. In this paper we will address the issue of identifying Algerian-interest web pages using a machine learning approach. We will present the process of acquiring data for the supervised learning phase and adapting it into a usable dataset, as well as using it to construct three distinct classifiers using different parts of the data. The resulting classifiers have shown outstanding performances (up to F-score = 0.93) for such application.
基于URL和内容的网站分类:阿尔及利亚vs.非阿尔及利亚案例
基于主题或情感的网页分类是Web内容挖掘技术的一种常见应用。在本文中,我们将介绍一种新的应用程序,旨在识别特定网页所针对的国家。其目的是能够自动区分针对特定国家的网站,同时使用URL和网页内容。在本文中,我们将使用机器学习方法解决识别阿尔及利亚兴趣网页的问题。我们将介绍为监督学习阶段获取数据并将其调整为可用数据集的过程,以及使用它来使用数据的不同部分构建三个不同的分类器。结果分类器在这种应用程序中表现出出色的性能(高达f分数= 0.93)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信