Comparative study between subband and standard ICA/BSS method in context with EEG signal for movement imagery classification

M. Mukul, F. Matsuno
{"title":"Comparative study between subband and standard ICA/BSS method in context with EEG signal for movement imagery classification","authors":"M. Mukul, F. Matsuno","doi":"10.1109/SII.2010.5708349","DOIUrl":null,"url":null,"abstract":"This paper work exploits the effectiveness of subband Independent component analysis(ICA)/blind source separation (BSS) in context with EEG signals over the standard ICA/BSS method. The estimated separating matrix by both methods is further subjected to the EOG corrected EEG signals for the extraction of the temporally decorrelated EEG signals. We propose the novel method for automatic selection of the temporally decorrelated /independent components, which have maximum discriminatory information (that captures the phenomenon of ERD and ERS) among the signal subspace components of signal space. The performance of the proposed method has been evaluated by classification accuracy and Cohen's kappa coefficient (k).","PeriodicalId":334652,"journal":{"name":"2010 IEEE/SICE International Symposium on System Integration","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/SICE International Symposium on System Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SII.2010.5708349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper work exploits the effectiveness of subband Independent component analysis(ICA)/blind source separation (BSS) in context with EEG signals over the standard ICA/BSS method. The estimated separating matrix by both methods is further subjected to the EOG corrected EEG signals for the extraction of the temporally decorrelated EEG signals. We propose the novel method for automatic selection of the temporally decorrelated /independent components, which have maximum discriminatory information (that captures the phenomenon of ERD and ERS) among the signal subspace components of signal space. The performance of the proposed method has been evaluated by classification accuracy and Cohen's kappa coefficient (k).
子带与标准ICA/BSS方法在脑电信号背景下运动图像分类的比较研究
本文研究了子波段独立分量分析(ICA)/盲源分离(BSS)方法在脑电信号分析中的有效性,优于标准的ICA/BSS方法。将两种方法估计的分离矩阵进一步进行EOG校正后的脑电信号处理,提取时间去相关的脑电信号。提出了一种在信号子空间分量中具有最大区别信息(即捕获ERD和ERS现象)的时间去相关/独立分量的自动选择方法。通过分类精度和科恩kappa系数(k)对所提方法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信